Testing The Hg1700 Inertial Measurement Unit For Implementation Into The Aires Unmanned Underwater Vehicle

Download Testing The Hg1700 Inertial Measurement Unit For Implementation Into The Aires Unmanned Underwater Vehicle PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Testing The Hg1700 Inertial Measurement Unit For Implementation Into The Aires Unmanned Underwater Vehicle book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Testing the HG1700 inertial measurement unit for implementation into the AIRES unmanned underwater vehicle

The ARIES Unmanned Underwater Vehicle (UUV) currently uses an Inertial Measurement Unit (IMU) with an inherent rotation rate error bias of 10 degrees/hour. Then need for a more accurate IMU for long term missions has led to the purchase of the Honeywell HG1700 IMU. The HG1700 is a ring laser gyroscope designed specifically as part of the navigation software in multiple U.S. missiles. The objective of this research is to perform numerous bench tests on the HG1700 to test its capabilities and to begin the process of implementing the IMU into the ARIES unmanned underwater vehicle. Specifically, the IMU is tested for correct setup configurations, angle of rotation accuracies, the rotation rate error bias, and positional accuracies. Also, guidelines for integrating the IMU with the current software in the ARIES vehicle are discussed.
Testing the HG1700 Inertial Measurement Unit for Implementation Into the ARIES Unmanned Underwater Vehicle

The ARIES Unmanned Underwater Vehicle (UUV) currently uses an Inertial Measurement Unit (IMU) with an inherent rotation rate error bias of 10 degrees/hour. Then need for a more accurate IMU for long term missions has led to the purchase of the Honeywell HG1700 IMU. The HG1700 is a ring laser gyroscope designed specifically as part of the navigation software in multiple U.S. missiles. The objective of this research is to perform numerous bench tests on the HG1700 to test its capabilities and to begin the process of implementing the IMU into the ARIES unmanned underwater vehicle. Specifically, the IMU is tested for correct setup configurations, angle of rotation accuracies, the rotation rate error bias, and positional accuracies. Also, guidelines for integrating the IMU with the current software in the ARIES vehicle are discussed.
MEMS IMU Inertial Measurement Unit One-way-travel-time Inertial Measurement Unit Autonomous Underwater Vehicles

Recent advances in acoustic navigation methodologies are enabling the way for AUVs to extend their submerged mission time and maintain a bounded XY position error. Additionally, advances in inertial sensor technology have drastically lowered the size, power consumption, and cost of these sensors. Nonetheless, these sensors are still noisy and accrue error over time. This thesis builds on the research and recent developments in single beacon one-way-travel- time (OWTT) acoustic navigation and investigates the degree of bounding position error for small AUVs with a minimal navigation strap-down sensor suite, relying mostly on a consumer grade microelectromechanical system (MEMS) inertial measurement unit (IMU) and a vehicle's dynamic model velocity. An implementation of an Extended Kalman Filter (EKF) that includes IMU bias estimation and coupled with a range filter, is obtained in the field on two OceanServer Technology, Inc. Iver2 AUVs and one Bluefin Robotics SandShark [mu]AUV. Results from these field trials on Ashumet Pond of Falmouth, Massachusetts, the Charles River of Cambridge, Massachusetts, and Monterey Bay near Santa Cruz, California show a navigation solution accuracy comparable to current standard navigation techniques.