Terahertz Sensing Technology Vol 2 Emerging Scientific Applications And Novel Device Concepts

Download Terahertz Sensing Technology Vol 2 Emerging Scientific Applications And Novel Device Concepts PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Terahertz Sensing Technology Vol 2 Emerging Scientific Applications And Novel Device Concepts book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Terahertz Sensing Technology - Vol 2: Emerging Scientific Applications And Novel Device Concepts

The last research frontier in high frequency electronics lies in the so-called terahertz (or submillimeter wave) regime, between the traditional microwave and the infrared domains. Significant scientific and technical challenges within the terahertz (THz) frequency regime have recently motivated an array of new research activities. During the last few years, major research programs have emerged that are focused on advancing the state of the art in THz frequency electronic technology and on investigating novel applications of THz frequency sensing. This book provides a detailed review of the new THz frequency technological developments that are emerging across a wide spectrum of sensing and technology areas.Volume II presents cutting edge results in two primary areas: (1) research that is attempting to establish THz-frequency sensing as a new characterization tool for chemical, biological and semiconductor materials, and (2) theoretical and experimental efforts to define new device concepts within the “THz gap”.
Terahertz Sensing Technology

The last research frontier in high frequency electronics lies in the so-called terahertz (or submillimeter wave) regime, between the traditional microwave and the infrared domains. Significant scientific and technical challenges within the terahertz (THz) frequency regime have recently motivated an array of new research activities. During the last few years, major research programs have emerged that are focused on advancing the state of the art in THz frequency electronic technology and on investigating novel applications of THz frequency sensing. This book provides a detailed review of the new THz frequency technological developments that are emerging across a wide spectrum of sensing and technology areas. Volume II presents cutting edge results in two primary areas: (1) research that is attempting to establish THz-frequency sensing as a new characterization tool for chemical, biological and semiconductor materials, and (2) theoretical and experimental efforts to define new device concepts within the OC THz gapOCO. Contents: THz-Frequency Spectroscopic Sensing of DNA and Related Biological Materials (T Globus et al.); Spectroscopy with Electronic Terahertz Techniques for Chemical and Biological Sensing (M K Choi et al.); Terahertz Applications to Biomolecular Sensing (A G Markelz & S E Whitmire); Characteristics of Nano-Scale Composites at THz and IR Spectral Regions (J F Federici & H Grebel); Fundamentals of Terrestrial Millimeter-Wave and THz Remote Sensing (E R Brown); Terahertz Emission Using Quantum Dots and Microcavities (G S Solomon et al.); Terahertz Transport in Semiconductor Quantum Structures (S J Allen & J S Scott); Advanced Theory of Instability in Tunneling Nanostructures (D L Woolard et al.); Wigner Function Simulations of Quantum DeviceOCoCircuits Interactions (H L Grubin & R C Buggeln); Continuous-Wave Terahertz Spectroscopy of Plasmas and Biomolecules (D F Plusquellic et al.). Readership: Undergraduates, graduate students, academics and researchers in engineering and science."
Terahertz Science and Technology for Military and Security Applications

The inherent advantages and potential payoffs of the terahertz (THz) regime for military and security applications serve as an important driver for interest in new THz-related science and technology. In particular, the very rapid growth in more recent years is arguably most closely linked to the potential payoffs of THz sensing and imaging (THz-S&I). This book presents some of the leading fundamental research efforts towards the realization of practical THz-S&I capabilities for military and security applications. Relevant subjects include theoretical prediction and/or measurement of THz spectroscopic phenomenon in solid-state materials such as high explosives (e.g. HMX, PETN, RDX, TNT, etc.), carbon-fiber composites, biological agents (e.g. DNA, RNA, proteins, amino acids) and organic-semiconductor nanostructures. Individual papers also address the effective utilization of state-of-the-art THz-frequency technology in military and security relevant scenarios such as standoff S&I, screening of packages and personnel, and perimeter defense. Technical papers introduce novel devices and/or concepts that enhance THz source and detector performance, enabling completely new types of sensor functionality at THz frequency (e.g. detection at nanoscale/molecular levels), and defining new and innovative sensing modalities (e.g. remote personnel identification) for defense and security. Therefore, the collective research presented here represents a valuable source of information on the evolving field of THz-S&I for military and security applications. Sample Chapter(s). Foreword (106 KB). Chapter 1: Development of Computational Methodologies for the Prediction and Analysis of Solid-State Terahertz Spectra (1,347 KB). Contents: Fire Damage on Carbon Fiber Materials Characterized by THz Waves (N Karpowicz et al.); Fingerprinting Insulins in the Spectral Region from Mid-IR to THz (R Song et al.); Ambient Air Used as the Nonlinear Media for THz Wave Generation (X Xie et al.); Time Domain Terahertz Imaging of Threats in Luggage and Personnel (D Zimdars et al.); Designed Self-Organization for Molecular Optoelectronic Sensors (M Norton); An Optically-Triggered I-RTD Hybrid THz Oscillator Design (D Woolard et al.); New Technique to Suppress Sidelobe Clutter in Perimeter Security Systems (G W Webb et al.); Remote Identification of Foreign Subjects (A Sokolnikov); and other papers. Readership: University researchers in electrical engineering, physics, chemistry, biology; students and small business efforts in high-frequency electronics and sensors; as a supplement for graduate courses.