Tensor Networks For Dimensionality Reduction And Large Scale Optimization


Download Tensor Networks For Dimensionality Reduction And Large Scale Optimization PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Tensor Networks For Dimensionality Reduction And Large Scale Optimization book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Tensor Networks for Dimensionality Reduction and Large-Scale Optimization


Tensor Networks for Dimensionality Reduction and Large-Scale Optimization

Author: Andrzej Cichocki

language: en

Publisher:

Release Date: 2017-05-28


DOWNLOAD





This monograph builds on Tensor Networks for Dimensionality Reduction and Large-scale Optimization: Part 1 Low-Rank Tensor Decompositions by discussing tensor network models for super-compressed higher-order representation of data/parameters and cost functions, together with an outline of their applications in machine learning and data analytics. A particular emphasis is on elucidating, through graphical illustrations, that by virtue of the underlying low-rank tensor approximations and sophisticated contractions of core tensors, tensor networks have the ability to perform distributed computations on otherwise prohibitively large volume of data/parameters, thereby alleviating the curse of dimensionality. The usefulness of this concept is illustrated over a number of applied areas, including generalized regression and classification, generalized eigenvalue decomposition and in the optimization of deep neural networks. The monograph focuses on tensor train (TT) and Hierarchical Tucker (HT) decompositions and their extensions, and on demonstrating the ability of tensor networks to provide scalable solutions for a variety of otherwise intractable large-scale optimization problems. Tensor Networks for Dimensionality Reduction and Large-scale Optimization Parts 1 and 2 can be used as stand-alone texts, or together as a comprehensive review of the exciting field of low-rank tensor networks and tensor decompositions. See also: Tensor Networks for Dimensionality Reduction and Large-scale Optimization: Part 1 Low-Rank Tensor Decompositions. ISBN 978-1-68083-222-8

Tensor Networks for Dimensionality Reduction and Large-scale Optimization


Tensor Networks for Dimensionality Reduction and Large-scale Optimization

Author: Andrzej Cichocki

language: en

Publisher:

Release Date: 2016


DOWNLOAD





Modern applications in engineering and data science are increasingly based on multidimensional data of exceedingly high volume, variety, and structural richness. However, standard machine learning algorithms typically scale exponentially with data volume and complexity of cross-modal couplings - the so called curse of dimensionality - which is prohibitive to the analysis of large-scale, multi-modal and multi-relational datasets. Given that such data are often efficiently represented as multiway arrays or tensors, it is therefore timely and valuable for the multidisciplinary machine learning and data analytic communities to review low-rank tensor decompositions and tensor networks as emerging tools for dimensionality reduction and large scale optimization problems. Our particular emphasis is on elucidating that, by virtue of the underlying low-rank approximations, tensor networks have the ability to alleviate the curse of dimensionality in a number of applied areas. In Part 1 of this monograph we provide innovative solutions to low-rank tensor network decompositions and easy to interpret graphical representations of the mathematical operations on tensor networks. Such a conceptual insight allows for seamless migration of ideas from the flat-view matrices to tensor network operations and vice versa, and provides a platform for further developments, practical applications, and non-Euclidean extensions. It also permits the introduction of various tensor network operations without an explicit notion of mathematical expressions, which may be beneficial for many research communities that do not directly rely on multilinear algebra. Our focus is on the Tucker and tensor train (TT) decompositions and their extensions, and on demonstrating the ability of tensor networks to provide linearly or even super-linearly (e.g., logarithmically) scalable solutions, as illustrated in detail in Part 2 of this monograph.

Tensor Networks for Dimensionality Reduction and Large-Scale Optimization


Tensor Networks for Dimensionality Reduction and Large-Scale Optimization

Author: Andrzej Cichocki

language: en

Publisher:

Release Date: 2016-12-19


DOWNLOAD





This monograph provides a systematic and example-rich guide to the basic properties and applications of tensor network methodologies, and demonstrates their promise as a tool for the analysis of extreme-scale multidimensional data. It demonstrates the ability of tensor networks to provide linearly or even super-linearly, scalable solutions.