Tensor Categories And Endomorphisms Of Von Neumann Algebras


Download Tensor Categories And Endomorphisms Of Von Neumann Algebras PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Tensor Categories And Endomorphisms Of Von Neumann Algebras book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Tensor Categories and Endomorphisms of von Neumann Algebras


Tensor Categories and Endomorphisms of von Neumann Algebras

Author: Marcel Bischoff

language: en

Publisher: Springer

Release Date: 2015-01-13


DOWNLOAD





C* tensor categories are a point of contact where Operator Algebras and Quantum Field Theory meet. They are the underlying unifying concept for homomorphisms of (properly infinite) von Neumann algebras and representations of quantum observables. The present introductory text reviews the basic notions and their cross-relations in different contexts. The focus is on Q-systems that serve as complete invariants, both for subfactors and for extensions of quantum field theory models. It proceeds with various operations on Q-systems (several decompositions, the mirror Q-system, braided product, centre and full centre of Q-systems) some of which are defined only in the presence of a braiding. The last chapter gives a brief exposition of the relevance of the mathematical structures presented in the main body for applications in Quantum Field Theory (in particular two-dimensional Conformal Field Theory, also with boundaries or defects).

Transfer Operators, Endomorphisms, and Measurable Partitions


Transfer Operators, Endomorphisms, and Measurable Partitions

Author: Sergey Bezuglyi

language: en

Publisher: Springer

Release Date: 2018-06-21


DOWNLOAD





The subject of this book stands at the crossroads of ergodic theory and measurable dynamics. With an emphasis on irreversible systems, the text presents a framework of multi-resolutions tailored for the study of endomorphisms, beginning with a systematic look at the latter. This entails a whole new set of tools, often quite different from those used for the “easier” and well-documented case of automorphisms. Among them is the construction of a family of positive operators (transfer operators), arising naturally as a dual picture to that of endomorphisms. The setting (close to one initiated by S. Karlin in the context of stochastic processes) is motivated by a number of recent applications, including wavelets, multi-resolution analyses, dissipative dynamical systems, and quantum theory. The automorphism-endomorphism relationship has parallels in operator theory, where the distinction is between unitary operators in Hilbert space and more general classes of operators such as contractions. There is also a non-commutative version: While the study of automorphisms of von Neumann algebras dates back to von Neumann, the systematic study of their endomorphisms is more recent; together with the results in the main text, the book includes a review of recent related research papers, some by the co-authors and their collaborators.

Topological Phases of Matter and Quantum Computation


Topological Phases of Matter and Quantum Computation

Author: Paul Bruillard

language: en

Publisher: American Mathematical Soc.

Release Date: 2020-03-31


DOWNLOAD





This volume contains the proceedings of the AMS Special Session on Topological Phases of Matter and Quantum Computation, held from September 24–25, 2016, at Bowdoin College, Brunswick, Maine. Topological quantum computing has exploded in popularity in recent years. Sitting at the triple point between mathematics, physics, and computer science, it has the potential to revolutionize sub-disciplines in these fields. The academic importance of this field has been recognized in physics through the 2016 Nobel Prize. In mathematics, some of the 1990 Fields Medals were awarded for developments in topics that nowadays are fundamental tools for the study of topological quantum computation. Moreover, the practical importance of this discipline has been underscored by recent industry investments. The relative youth of this field combined with a high degree of interest in it makes now an excellent time to get involved. Furthermore, the cross-disciplinary nature of topological quantum computing provides an unprecedented number of opportunities for cross-pollination of mathematics, physics, and computer science. This can be seen in the variety of works contained in this volume. With articles coming from mathematics, physics, and computer science, this volume aims to provide a taste of different sub-disciplines for novices and a wealth of new perspectives for veteran researchers. Regardless of your point of entry into topological quantum computing or your experience level, this volume has something for you.