Techniques For Optimizing Applications

Download Techniques For Optimizing Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Techniques For Optimizing Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Optimization Techniques and Applications with Examples

A guide to modern optimization applications and techniques in newly emerging areas spanning optimization, data science, machine intelligence, engineering, and computer sciences Optimization Techniques and Applications with Examples introduces the fundamentals of all the commonly used techniques in optimization that encompass the broadness and diversity of the methods (traditional and new) and algorithms. The author—a noted expert in the field—covers a wide range of topics including mathematical foundations, optimization formulation, optimality conditions, algorithmic complexity, linear programming, convex optimization, and integer programming. In addition, the book discusses artificial neural network, clustering and classifications, constraint-handling, queueing theory, support vector machine and multi-objective optimization, evolutionary computation, nature-inspired algorithms and many other topics. Designed as a practical resource, all topics are explained in detail with step-by-step examples to show how each method works. The book’s exercises test the acquired knowledge that can be potentially applied to real problem solving. By taking an informal approach to the subject, the author helps readers to rapidly acquire the basic knowledge in optimization, operational research, and applied data mining. This important resource: Offers an accessible and state-of-the-art introduction to the main optimization techniques Contains both traditional optimization techniques and the most current algorithms and swarm intelligence-based techniques Presents a balance of theory, algorithms, and implementation Includes more than 100 worked examples with step-by-step explanations Written for upper undergraduates and graduates in a standard course on optimization, operations research and data mining, Optimization Techniques and Applications with Examples is a highly accessible guide to understanding the fundamentals of all the commonly used techniques in optimization.
Numerical Methods & Optimization

Numerical method is a mathematical tool designed to solve numerical problems. The implementation of a numerical method with an appropriate convergence check in a programming language is called a numerical algorithm. Numerical analysis is the study of algorithms that use numerical approximation for the problems of mathematical analysis. Numerical analysis naturally finds application in all fields of engineering and the physical sciences. Numerical methods are used to approach the solution of the problem and the use of computer improves the accuracy of the solution and working speed. Optimization is the process of finding the conditions that give the maximum or minimum value of a function. For optimization purpose, linear programming technique helps the management in decision making process. This technique is used in almost every functional area of business. This book include flowcharts and programs for various numerical methods by using MATLAB language. My hope is that this book, through its careful explanations of concepts, practical examples and figures bridges the gap between knowledge and proper application of that knowledge.
Advanced Computing Techniques for Optimization in Cloud

This book focuses on the current trends in research and analysis of virtual machine placement in a cloud data center. It discusses the integration of machine learning models and metaheuristic approaches for placement techniques. Taking into consideration the challenges of energy-efficient resource management in cloud data centers, it emphasizes upon computing resources being suitably utilised to serve application workloads in order to reduce energy utilisation, while maintaining apt performance. This book provides information on fault-tolerant mechanisms in the cloud and provides an outlook on task scheduling techniques. Focuses on virtual machine placement and migration techniques for cloud data centers Presents the role of machine learning and metaheuristic approaches for optimisation in cloud computing services Includes application of placement techniques for quality of service, performance, and reliability improvement Explores data center resource management, load balancing and orchestration using machine learning techniques Analyses dynamic and scalable resource scheduling with a focus on resource management The text is for postgraduate students, professionals, and academic researchers working in the fields of computer science and information technology.