Systems Simulation And Modeling For Cloud Computing And Big Data Applications


Download Systems Simulation And Modeling For Cloud Computing And Big Data Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Systems Simulation And Modeling For Cloud Computing And Big Data Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Systems Simulation and Modeling for Cloud Computing and Big Data Applications


Systems Simulation and Modeling for Cloud Computing and Big Data Applications

Author: Dinesh Peter

language: en

Publisher: Academic Press

Release Date: 2020-02-26


DOWNLOAD





Systems Simulation and Modelling for Cloud Computing and Big Data Applications provides readers with the most current approaches to solving problems through the use of models and simulations, presenting SSM based approaches to performance testing and benchmarking that offer significant advantages. For example, multiple big data and cloud application developers and researchers can perform tests in a controllable and repeatable manner. Inspired by the need to analyze the performance of different big data processing and cloud frameworks, researchers have introduced several benchmarks, including BigDataBench, BigBench, HiBench, PigMix, CloudSuite and GridMix, which are all covered in this book. Despite the substantial progress, the research community still needs a holistic, comprehensive big data SSM to use in almost every scientific and engineering discipline involving multidisciplinary research. SSM develops frameworks that are applicable across disciplines to develop benchmarking tools that are useful in solutions development. - Examines the methodology and requirements of benchmarking big data and cloud computing tools, advances in big data frameworks and benchmarks for large-scale data analytics, and frameworks for benchmarking and predictive analytics in big data deployment - Discusses applications using big data benchmarks, such as BigDataBench, BigBench, HiBench, MapReduce, HPCC, ECL, HOBBIT, GridMix and PigMix, and applications using big data frameworks, such as Hadoop, Spark, Samza, Flink and SQL frameworks - Covers development of big data benchmarks to evaluate workloads in state-of-the-practice heterogeneous hardware platforms, advances in modeling and simulation tools for performance evaluation, security problems and scalable cloud computing environments

Modeling and Simulation in HPC and Cloud Systems


Modeling and Simulation in HPC and Cloud Systems

Author: Joanna Kołodziej

language: en

Publisher: Springer

Release Date: 2018-01-30


DOWNLOAD





This book consists of eight chapters, five of which provide a summary of the tutorials and workshops organised as part of the cHiPSet Summer School: High-Performance Modelling and Simulation for Big Data Applications Cost Action on “New Trends in Modelling and Simulation in HPC Systems,” which was held in Bucharest (Romania) on September 21–23, 2016. As such it offers a solid foundation for the development of new-generation data-intensive intelligent systems. Modelling and simulation (MS) in the big data era is widely considered the essential tool in science and engineering to substantiate the prediction and analysis of complex systems and natural phenomena. MS offers suitable abstractions to manage the complexity of analysing big data in various scientific and engineering domains. Unfortunately, big data problems are not always easily amenable to efficient MS over HPC (high performance computing). Further, MS communities may lack the detailed expertise required to exploit the full potential of HPC solutions, and HPC architects may not be fully aware of specific MS requirements. The main goal of the Summer School was to improve the participants’ practical skills and knowledge of the novel HPC-driven models and technologies for big data applications. The trainers, who are also the authors of this book, explained how to design, construct, and utilise the complex MS tools that capture many of the HPC modelling needs, from scalability to fault tolerance and beyond. In the final three chapters, the book presents the first outcomes of the school: new ideas and novel results of the research on security aspects in clouds, first prototypes of the complex virtual models of data in big data streams and a data-intensive computing framework for opportunistic networks. It is a valuable reference resource for those wanting to start working in HPC and big data systems, as well as for advanced researchers and practitioners.

High-Performance Modelling and Simulation for Big Data Applications


High-Performance Modelling and Simulation for Big Data Applications

Author: Joanna Kołodziej

language: en

Publisher: Springer

Release Date: 2019-03-25


DOWNLOAD





This open access book was prepared as a Final Publication of the COST Action IC1406 “High-Performance Modelling and Simulation for Big Data Applications (cHiPSet)“ project. Long considered important pillars of the scientific method, Modelling and Simulation have evolved from traditional discrete numerical methods to complex data-intensive continuous analytical optimisations. Resolution, scale, and accuracy have become essential to predict and analyse natural and complex systems in science and engineering. When their level of abstraction raises to have a better discernment of the domain at hand, their representation gets increasingly demanding for computational and data resources. On the other hand, High Performance Computing typically entails the effective use of parallel and distributed processing units coupled with efficient storage, communication and visualisation systems to underpin complex data-intensive applications in distinct scientific and technical domains. It is then arguably required to have a seamless interaction of High Performance Computing with Modelling and Simulation in order to store, compute, analyse, and visualise large data sets in science and engineering. Funded by the European Commission, cHiPSet has provided a dynamic trans-European forum for their members and distinguished guests to openly discuss novel perspectives and topics of interests for these two communities. This cHiPSet compendium presents a set of selected case studies related to healthcare, biological data, computational advertising, multimedia, finance, bioinformatics, and telecommunications.