System Resource Management For Distributed Real Time Systems

Download System Resource Management For Distributed Real Time Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get System Resource Management For Distributed Real Time Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Resource Management in Real-time Systems and Networks

This book introduces the concepts and state-of-the-art research developments of resource management in real-time systems and networks. Real-time systems and networks are of increasing importance in many applications, including automated factories, telecommunication systems, defense systems, and space systems. This book introduces the concepts and state-of-the-art research developments of resource management in real-time systems and networks. Unlike other texts in the field, it covers the entire spectrum of issues in resource management, including task scheduling in uniprocessor real-time systems; task scheduling, fault-tolerant task scheduling, and resource reclaiming in multiprocessor real-time systems; conventional task scheduling and object-based task scheduling in distributed real-time systems; message scheduling; QoS routing; dependable communication; multicast communication; and medium access protocols in real-time networks. It provides algorithmic treatments for all of the issues addressed, highlighting the intuition behind each algorithm and giving examples. The book also includes two chapters of case studies.
Distributed Real-Time Systems

This classroom-tested textbook describes the design and implementation of software for distributed real-time systems, using a bottom-up approach. The text addresses common challenges faced in software projects involving real-time systems, and presents a novel method for simply and effectively performing all of the software engineering steps. Each chapter opens with a discussion of the core concepts, together with a review of the relevant methods and available software. This is then followed with a description of the implementation of the concepts in a sample kernel, complete with executable code. Topics and features: introduces the fundamentals of real-time systems, including real-time architecture and distributed real-time systems; presents a focus on the real-time operating system, covering the concepts of task, memory, and input/output management; provides a detailed step-by-step construction of a real-time operating system kernel, which is then used to test various higher level implementations; describes periodic and aperiodic scheduling, resource management, and distributed scheduling; reviews the process of application design from high-level design methods to low-level details of design and implementation; surveys real-time programming languages and fault tolerance techniques; includes end-of-chapter review questions, extensive C code, numerous examples, and a case study implementing the methods in real-world applications; supplies additional material at an associated website. Requiring only a basic background in computer architecture and operating systems, this practically-oriented work is an invaluable study aid for senior undergraduate and graduate-level students of electrical and computer engineering, and computer science. The text will also serve as a useful general reference for researchers interested in real-time systems.
A Fault Tolerance Distributed Real-Time System. Design and Implementation

Doctoral Thesis / Dissertation from the year 2013 in the subject Computer Science - General, grade: 90, University of Mosul (College of Computer Sciences And Mathematics), language: English, abstract: Now a day completed real-time systems are distributed. One of the working area of real-time scheduling is distributed scheduling. Task scheduling in distributed systems is dealt with two levels: on the level of each processor (local scheduling), and on the level of the allocation of tasks to processors (global scheduling). In this thesis, a distributed real-time system with fault tolerance has been designed and called Fault Tolerance Distributed Real Time System FTDRTS. The system consists of heterogeneous processors act as servers and clients connected together via LAN communication network. This system has two types of scheduling schemes: (1) global model scheduling, (2) independent model scheduling for scheduling tasks in real time distributed manner. The time utility function TUF has been developed and called the DTUF (Developed TUF) function. This function gives another dimension and used to priorities’ tasks, based on whether they are Urgent or Important, or both, or neither. A fault tolerance protocol called DRT-FTIP (Distributed Real Time – Fault Tolerance Integrity Protocol) has been developed. This protocol increases the integrity of the scheduling in distributed real time systems. The proposed Distributed Real-Time system with its scheduling algorithms and integrity protocol have been designed using the Java Remote Method Invocation (RMI) and use the Flight Reservation System as a case study. The simulation results of this proposed distributed realtime system using global scheduling algorithm gives Deadline Satisfaction Ratio (DSR) equal 95%. While Accrued Utility Ratio (AUR) equal 0.7286.