System Design With Systemc


Download System Design With Systemc PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get System Design With Systemc book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

System Design with SystemCTM


System Design with SystemCTM

Author: Thorsten Grötker

language: en

Publisher: Springer Science & Business Media

Release Date: 2007-05-08


DOWNLOAD





I am honored and delighted to write the foreword to this very first book about SystemC. It is now an excellent time to summarize what SystemC really is and what it can be used for. The main message in the area of design in the 2001 International Te- nologyRoadmapfor Semiconductors (ITRS) isthat“cost ofdesign is the greatest threat to the continuation ofthe semiconductor roadmap. ” This recent revision of the ITRS describes the major productivity improvements of the last few years as “small block reuse,” “large block reuse ,” and “IC implementation tools. ” In order to continue to reduce design cost, the - quired future solutions will be “intelligent test benches” and “embedded system-level methodology. ” As the new system-level specification and design language, SystemC - rectly contributes to these two solutions. These will have the biggest - pact on future design technology and will reduce system implementation cost. Ittook SystemC less than two years to emerge as the leader among the many new and well-discussed system-level designlanguages. Inmy op- ion, this is due to the fact that SystemC adopted object-oriented syst- level design—the most promising method already applied by the majority of firms during the last couple of years. Even before the introduction of SystemC, many system designers have attempted to develop executable specifications in C++. These executable functional specifications are then refined to the well-known transaction level, to model the communication of system-level processes.

System Design Automation


System Design Automation

Author: Renate Merker

language: en

Publisher: Springer Science & Business Media

Release Date: 2013-03-09


DOWNLOAD





Design automation of electronic and hybrid systems is a steadily growing field of interest and a permanent challenge for researchers in Electronics, Computer Engineering and Computer Science. System Design Automation presents some recent results in design automation of different types of electronic and mechatronic systems. It deals with various topics of design automation, ranging from high level digital system synthesis, through analogue and heterogeneous system analysis and design, up to system modeling and simulation. Design automation is treated from the aspects of its theoretical fundamentals, its basic approach and its methods and tools. Several application cases are presented in detail. The book consists of three chapters: High-Level System Synthesis (Digital Hardware/Software Systems). Here embedded systems, distributed systems and processor arrays as well as hardware-software codesign are treated. Also three special application cases are discussed in detail; Analog and Heterogeneous System Design (System Approach and Methodology). This chapter copes with the analysis and design of hybrid systems comprised of analog and digital, electronic and mechanical components; System Simulation and Evaluation (Methods and Tools). In this chapter object-oriented Modelling, analog system simulation including fault-simulation, parameter optimization and system validation are regarded. The contents of the book are based on material presented at the Workshop System Design Automation (SDA 2000) organised by the Sonderforschungsbereich 358 of the Deutsche Forschungsgemeinschaft at TU Dresden.

Formal Methods and Models for System Design


Formal Methods and Models for System Design

Author: Rajesh Gupta

language: en

Publisher: Springer Science & Business Media

Release Date: 2004-10-01


DOWNLOAD





Perhaps nothing characterizes the inherent heterogeneity in embedded sys tems than the ability to choose between hardware and software implementations of a given system function. Indeed, most embedded systems at their core repre sent a careful division and design of hardware and software parts of the system To do this task effectively, models and methods are necessary functionality. to capture application behavior, needs and system implementation constraints. Formal modeling can be valuable in addressing these tasks. As with most engineering domains, co-design practice defines the state of the it seeks to add new capabilities in system conceptualization, mod art, though eling, optimization and implementation. These advances -particularly those related to synthesis and verification tasks -direct1y depend upon formal under standing of system behavior and performance measures. Current practice in system modeling relies upon exploiting high-level programming frameworks, such as SystemC, EstereI, to capture design at increasingly higher levels of ab straction and attempts to reduce the system implementation task. While raising the abstraction levels for design and verification tasks, to be really useful, these approaches must also provide for reuse, adaptation of the existing intellectual property (IP) blocks.