System Control And Rough Paths


Download System Control And Rough Paths PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get System Control And Rough Paths book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

System Control and Rough Paths


System Control and Rough Paths

Author: Terry Lyons

language: en

Publisher: Clarendon Press

Release Date: 2002-12-19


DOWNLOAD





This book describes a completely novel mathematical development which has already influenced probability theory, and has potential for application to engineering and to areas of pure mathematics. Intended for probabilists, mathematicians and engineers with a mathematical background from graduate level onwards, this book develops the evolution of complex non-linear systems subject to rough or rapidly fluctuating stimuli. Attention is focussed on an analysis of the relationship between the stimulus (or control) and the short to medium term evolution of a receiver (the response of the system). A rapidly fluctuation stimuli can be likened to a huge dataset; and a basic question is how best to reduce this dataset so as to capture the critical information and little else. An essential component problem involves identifying the point at which two different stimuli produce essentially the same response from the class of receivers. (When do two stereo sounds sound the same?). This is an essentially non-linear problem that requires novel mathematics. At one level, this book focuses on systems responding to such rough external stimuli, and demonstrates that the natural reduction approximates the stimuli as a sequence of nilpotent elements. The core result of the book is a continuity theorem that proves that the response of the system depends continuously on these nilpotent elements. A key mathematical aspect of the book is the notion of a rough path, based on combining the notion of p-variation of Wiener with the iterated integral expansions of paths introduced by K. T. Chen. The continuity theorem for these rough paths gives a new way to construct solutions to stochastic differential equations, providing a fresh approach to the Itô theory but also allowing new kinds of noisy perturbations (such as Fractional Brownian Motions) that cannot be discussed in the standard Itô approach. It also provides some interesting concrete examples of 'continuous free groups'.

Differential Equations Driven by Rough Paths


Differential Equations Driven by Rough Paths

Author: Terry J. Lyons

language: en

Publisher: Springer

Release Date: 2007-04-25


DOWNLOAD





Each year young mathematicians congregate in Saint Flour, France, and listen to extended lecture courses on new topics in Probability Theory. The goal of these notes, representing a course given by Terry Lyons in 2004, is to provide a straightforward and self supporting but minimalist account of the key results forming the foundation of the theory of rough paths.

Multidimensional Stochastic Processes as Rough Paths


Multidimensional Stochastic Processes as Rough Paths

Author: Peter K. Friz

language: en

Publisher: Cambridge University Press

Release Date: 2010-02-04


DOWNLOAD





Rough path analysis provides a fresh perspective on Ito's important theory of stochastic differential equations. Key theorems of modern stochastic analysis (existence and limit theorems for stochastic flows, Freidlin-Wentzell theory, the Stroock-Varadhan support description) can be obtained with dramatic simplifications. Classical approximation results and their limitations (Wong-Zakai, McShane's counterexample) receive 'obvious' rough path explanations. Evidence is building that rough paths will play an important role in the future analysis of stochastic partial differential equations and the authors include some first results in this direction. They also emphasize interactions with other parts of mathematics, including Caratheodory geometry, Dirichlet forms and Malliavin calculus. Based on successful courses at the graduate level, this up-to-date introduction presents the theory of rough paths and its applications to stochastic analysis. Examples, explanations and exercises make the book accessible to graduate students and researchers from a variety of fields.