Synergetics Of Molecular Systems


Download Synergetics Of Molecular Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Synergetics Of Molecular Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Synergetics of Molecular Systems


Synergetics of Molecular Systems

Author: Lev N. Lupichev

language: en

Publisher: Springer

Release Date: 2014-08-19


DOWNLOAD





Synergetics is the quantitative study of multicomponent systems that exhibit nonlinear dynamics and cooperativity. This book specifically considers basic models of the nonlinear dynamics of molecular systems and discusses relevant applications in biological physics and the polymer sciences. Emphasis is placed on specific solutions to the dynamical equations that correspond to the coherent formation of spatial-temporal structures, such as solitons, kinks and breathers, in particular. The emergence of these patterns in molecular structures provides a variety of information on their structural properties and plays a significant part in energy transfer processes, topological defects, dislocations, and related structure transitions. Real media, in which solitons take the form of solitary waves, are also considered. In this context, the formation of nonlinear waves in a continuous medium described by nonlinear equations is associated with spontaneous breaking of the local symmetry of the homogeneous system, which produces a range of interesting phenomena. A particular feature of this text is its combination of analytic and computational strategies to tackle difficult nonlinear problems at the molecular level of matter.

Synergetics


Synergetics

Author: Hermann Haken

language: en

Publisher: Springer Science & Business Media

Release Date: 2013-11-11


DOWNLOAD





This book is a reprint edition that comprises two titles, namely "Synergetics. An Introduction. Nonequilibrium Phase Transitions and Self-Organization in Physics, Chemistry and Biology" and ''Advanced Synergetics. Instability Hierarchies of Self Organizing Systems and Devices". The reason for this publication is two-fold: Since synergetics is a new type of interdisciplinary field, initiated by the author in 1969, the basic ideas developed in these volumes are of considerable theoretical interest. But much more than this, the methods and even the concrete examples presented in these books are still highly useful for graduate students, professors, and even for researchers in this fascinating field. The reason lies in the following facts: Synergetics deals with complex systems, i. e. systems that are composed of many individual parts that are able to spontaneously form spatial, temporal or functional structures by means of self-organization. Such phenomena occur in many fields ranging from physics, chemistry and biology to economy and sociology. More recent areas of application have been found in medicine and psychology, where the great potential of the basic principles of synergetics can be unearthed. Further applications have become possible in informatics, for instance the designing of new types of computers, and in other fields of engineering.

Synergetic Agents


Synergetic Agents

Author: Hermann Haken

language: en

Publisher: John Wiley & Sons

Release Date: 2012-07-18


DOWNLOAD





This book addresses both multi robot systems and miniaturization to the nanoscale from a unifying point of view, but without leaving aside typical particularities of either. The unifying aspect is based on the concept of information minimization whose precise formulation is the Haken-Levi-principle. The authors introduce basic concepts of multi-component self-organizing systems such as order parameters (well known from equilibrium and non-equilibrium phase transitions) and the slaving principle (which establishes a link to dynamical systems). Among explicit examples is the docking manoeuvre of two robots in two and three dimensions. The second part of the book deals with the rather recently arising field of molecular robotics. It is particularly here where nature has become a highly influential teacher for the construction of robots. In living biological cells astounding phenomena occur: there are molecules (proteins) that literally walk on polymer strands and transport loads that are heavier than their carriers, or molecules that, by joint action, contract muscles. The book provides the reader with an insight into these phenomena, especially by a detailed theoretical treatment of the molecular mechanism of muscle contraction. At the molecular level, for an appropriate approach the use of quantum theory is indispensable. The authors introduce and use it in a form that avoids all the clumsy calculations of wave-functions. They present a model which is based on an elementary version of quantum field theory and allows taking into account the impact of the surrounding on the quantum mechanical activity of a single molecule. By presenting explicit and pedagogical examples, the reader gets acquainted with the appropriate modelling of the walking behaviour of single molecular robots and their collective behaviour. The further development of multi-robot systems and particularly of molecular robots will require the cooperation of a variety of disciplines. Therefore the book appeals to a wide audience including researchers, instructors, and advanced graduate students.