Synchrony In Networked Microgrids Under Attacks


Download Synchrony In Networked Microgrids Under Attacks PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Synchrony In Networked Microgrids Under Attacks book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Microgrids


Microgrids

Author: Peng Zhang

language: en

Publisher: John Wiley & Sons

Release Date: 2024-03-26


DOWNLOAD





Microgrids Understand microgrids and networked microgrid systems Microgrids are interconnected groups of energy sources that operate together, capable of connecting with a larger grid or operating independently as needed and network conditions require. They can be valuable sources of energy for geographically circumscribed areas with highly targeted energy needs, and for remote or rural areas where continuous connection with a larger grid is difficult. Microgrids’ controllability makes them especially effective at incorporating renewable energy sources. Microgrids: Theory and Practice introduces readers to the analysis, design, and operation of microgrids and larger networked systems that integrate them. It brings to bear both cutting-edge research into microgrid technology and years of industry experience in designing and operating microgrids. Its discussions of core subjects such as microgrid modeling, control, and optimization make it an essential short treatment, valuable for both academic and industrial study. Readers will acquire the skills needed to address existing problems and meet new ones as this crucial area of power engineering develops. Microgrids: Theory and Practice also features: Incorporation of new cyber-physical system technologies for enabling microgrids as resiliency resources Theoretical treatment of a wide range of subjects including smart programmable microgrids, distributed and asynchronous optimization for microgrid dispatch, and AI-assisted microgrid protection Practical discussion of real-time microgrids simulations, hybrid microgrid design, transition to renewable microgrid networks, and more Microgrids: Theory and Practice is ideal as a textbook for graduate and advanced undergraduate courses in power engineering programs, and a valuable reference for power industry professionals looking to address the challenges posed by microgrids in their work.

Microgrids


Microgrids

Author: Amjad Anvari-Moghaddam

language: en

Publisher: Springer Nature

Release Date: 2021-03-15


DOWNLOAD





This book provides a comprehensive overview on the latest developments in the control, operation, and protection of microgrids. It provides readers with a solid approach to analyzing and understanding the salient features of modern control and operation management techniques applied to these systems, and presents practical methods with examples and case studies from actual and modeled microgrids. The book also discusses emerging concepts, key drivers and new players in microgrids, and local energy markets while addressing various aspects from day-ahead scheduling to real-time testing of microgrids. The book will be a valuable resource for researchers who are focused on control concepts, AC, DC, and AC/DC microgrids, as well as those working in the related areas of energy engineering, operations research and its applications to energy systems. Presents modern operation, control and protection techniques with applications to real world and emulated microgrids; Discusses emerging concepts, key drivers and new players in microgrids and local energy markets; Addresses various aspects from day-ahead scheduling to real-time testing of microgrids.

Microgrids


Microgrids

Author: Qobad Shafiee

language: en

Publisher: John Wiley & Sons

Release Date: 2024-01-04


DOWNLOAD





Microgrids Presents microgrid methodologies in modeling, stability, and control, supported by real-time simulations and experimental studies Microgrids: Dynamic Modeling, Stability and Control, provides comprehensive coverage of microgrid modeling, stability, and control, alongside new relevant perspectives and research outcomes, with vital information on several microgrid modeling methods, stability analysis methodologies and control synthesis approaches that are supported by real-time simulations and experimental studies for active learning in professionals and students alike. This book is divided into two parts: individual microgrids and interconnected microgrids. Both parts provide individual chapters on modeling, stability, and control, providing comprehensive information on the background, concepts, and architecture, supported by several examples and corresponding source codes/simulation files. Communication based control and cyber security of microgrids are addressed and new outcomes and advances in interconnected microgrids are discussed. Summarizing the outcome of more than 15 years of the authors’ teaching, research, and projects, Microgrids: Dynamic Modeling, Stability and Control covers specific sample topics such as: Microgrid dynamic modeling, covering microgrid components modeling, DC and AC microgrids modeling examples, reduced-order models, and model validation Microgrid stability analysis, covering stability analysis methods, islanded/grid connected/interconnected microgrid stability Microgrids control, covering hierarchical control structure, communication-based control, cyber-resilient control, advanced control theory applications, virtual inertia control and data-driven control Modeling, analysis of stability challenges, and emergency control of large-scale interconnected microgrids Synchronization stability of interconnected microgrids, covering control requirements of synchronous microgrids and inrush power analysis With comprehensive, complete, and accessible coverage of the subject, Microgrids: Dynamic Modeling, Stability and Control is the ideal reference for professionals (engineers, developers) and students working with power/smart grids, renewable energy, and power systems, to enable a more effective use of their microgrids or interconnected microgrids.