Synchronous And Resonant Dc Dc Conversion Technology Energy Factor And Mathematical Modeling

Download Synchronous And Resonant Dc Dc Conversion Technology Energy Factor And Mathematical Modeling PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Synchronous And Resonant Dc Dc Conversion Technology Energy Factor And Mathematical Modeling book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Synchronous and Resonant DC/DC Conversion Technology, Energy Factor, and Mathematical Modeling

Numbers alone are enough to describe the importance of DC/DC converters in modern power engineering. There are more than 500 recognized topologies, with more added each year. In their groundbreaking book Advanced DC/DC Converters, expert researchers Luo and Ye organized these technologies into six generations and illustrated their principles and operation through examples of over 100 original topologies. In chapters carefully drawn from that work, Synchronous and Resonant DC/DC Conversion Technology, Energy Factor, and Mathematical Modeling provides a focused, concise overview of synchronous and multiple-element resonant power converters. This reference carefully examines the topologies of more than 50 synchronous and resonant converters by illustrating the design of several prototypes developed by the authors. Using more than 100 diagrams as illustration, the book supplies insight into the fundamental concepts, design, and applications of the fifth (synchronous) and sixth (multiple-element resonant) converters as well as DC power sources and control circuits. The authors also discuss EMI/EMC problems and include a new chapter that introduces the new concept of Energy Factor (EF) and its importance in mathematical modeling as well as analyzing the transient process and impulse response of DC/DC converters. Synchronous and Resonant DC/DC Conversion Technology, Energy Factor, and Mathematical Modeling supplies a quick and accessible guide for anyone in need of specialized information on synchronous and resonant DC/DC converter technologies.
Advanced DC/DC Converters

DC/DC conversion techniques have undergone rapid development in recent decades. With the pioneering work of authors Fang Lin Luo and Hong Ye, DC/DC converters have now been sorted into their six generations, and by a rough count, over 800 different topologies currently exist, with more being developed each year. Advanced DC/DC Converters, Second Edition offers a concise, practical presentation of DC/DC converters, summarizes the spectrum of conversion technologies, and presents new ideas and more than 200 new topologies. Beginning with background material on DC/DC conversion, the book later discusses both voltage lift and super-lift converters. It then proceeds through each generation, including the groundbreaking sixth generation—converters developed by the authors that can be cascaded for high voltage transfer gain. This new edition updates every chapter and offers three new chapters. The introduction of the super-lift technique is an outstanding achievement in DC/DC conversion technology, and the ultra-lift technique and hybrid split-capacitor/inductor applied in Super-Lift Luo-Converters are introduced in Chapters 7 and 8. In Chapter 9, the authors have theoretically defined a new concept, Energy Factor (EF), researched the relations between EF and the mathematical modelling for power DC/DC converters, and demonstrated the modeling method for two converters. More than 320 figures, 60 tables, and 500 formulae allow the reader to more easily grasp the overall structure of advanced DC/DC converters, provide fast access to precise data, and help them to quickly determine the values of their own circuit components.
Power Electronics

Power Electronics is a large size technology, mainly covering four categories: the AC/DC rectifiers, DC/DC converters, DC/AC inverters, and AC/AC converters. This book offers approximately 100 novel topologies of all four. The applications are used in sustainable energy generation areas, such as distributed generation (DG), micro-grid (MG), smart grid (SG) systems, and electrical vehicles (EV). With case studies from GE, AEG, Simplatroll Ltd, and Chinese Power Manufacturing Co., the reader will be exposed to practical applications in industry and real-world settings. This new edition features an entirely new chapter on best switching angles to obtain lowest THD for multilevel DC/AC inverters. Additionally, all chapters have been updated and include homework problems throughout.