Symmetry Analysis Of Differential Equations With Mathematica

Download Symmetry Analysis Of Differential Equations With Mathematica PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Symmetry Analysis Of Differential Equations With Mathematica book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Symmetry Analysis of Differential Equations with Mathematica®

Author: Gerd Baumann
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-11-21
The purpose of this book is to provide the reader with a comprehensive introduction to the applications of symmetry analysis to ordinary and partial differential equations. The theoretical background of physics is illustrated by modem methods of computer algebra. The presentation of the material in the book is based on Mathematica 3.0 note books. The entire printed version of this book is available on the accompanying CD. The text is presented in such a way that the reader can interact with the calculations and experiment with the models and methods. Also contained on the CD is a package called MathLie-in honor of Sophus Lie---carrying out the calculations automatically. The application of symmetry analysis to problems from physics, mathematics, and en gineering is demonstrated by many examples. The study of symmetries of differential equations is an old subject. Thanks to Sophus Lie we today have available to us important information on the behavior of differential equations. Symmetries can be used to find exact solutions. Symmetries can be applied to verify and to develop numerical schemes. They can provide conservation laws for differential equations. The theory presented here is based on Lie, containing improve ments and generalizations made by later mathematicians who rediscovered and used Lie's work. The presentation of Lie's theory in connection with Mathematica is novel and vitalizes an old theory. The extensive symbolic calculations necessary under Lie's theory are supported by MathLie, a package written in Mathematica.
Introduction to Symmetry Analysis Paperback with CD-ROM

Author: Brian Cantwell
language: en
Publisher: Cambridge University Press
Release Date: 2002-09-23
An introduction to symmetry analysis for graduate students in science, engineering and applied mathematics.
New developments in Functional and Fractional Differential Equations and in Lie Symmetry

Delay, difference, functional, fractional, and partial differential equations have many applications in science and engineering. In this Special Issue, 29 experts co-authored 10 papers dealing with these subjects. A summary of the main points of these papers follows: Several oscillation conditions for a first-order linear differential equation with non-monotone delay are established in Oscillation Criteria for First Order Differential Equations with Non-Monotone Delays, whereas a sharp oscillation criterion using the notion of slowly varying functions is established in A Sharp Oscillation Criterion for a Linear Differential Equation with Variable Delay. The approximation of a linear autonomous differential equation with a small delay is considered in Approximation of a Linear Autonomous Differential Equation with Small Delay; the model of infection diseases by Marchuk is studied in Around the Model of Infection Disease: The Cauchy Matrix and Its Properties. Exact solutions to fractional-order Fokker–Planck equations are presented in New Exact Solutions and Conservation Laws to the Fractional-Order Fokker–Planck Equations, and a spectral collocation approach to solving a class of time-fractional stochastic heat equations driven by Brownian motion is constructed in A Collocation Approach for Solving Time-Fractional Stochastic Heat Equation Driven by an Additive Noise. A finite difference approximation method for a space fractional convection-diffusion model with variable coefficients is proposed in Finite Difference Approximation Method for a Space Fractional Convection–Diffusion Equation with Variable Coefficients; existence results for a nonlinear fractional difference equation with delay and impulses are established in On Nonlinear Fractional Difference Equation with Delay and Impulses. A complete Noether symmetry analysis of a generalized coupled Lane–Emden–Klein–Gordon–Fock system with central symmetry is provided in Oscillation Criteria for First Order Differential Equations with Non-Monotone Delays, and new soliton solutions of a fractional Jaulent soliton Miodek system via symmetry analysis are presented in New Soliton Solutions of Fractional Jaulent-Miodek System with Symmetry Analysis.