Surface Waves In Anisotropic And Laminated Bodies And Defects Detection


Download Surface Waves In Anisotropic And Laminated Bodies And Defects Detection PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Surface Waves In Anisotropic And Laminated Bodies And Defects Detection book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Surface Waves in Anisotropic and Laminated Bodies and Defects Detection


Surface Waves in Anisotropic and Laminated Bodies and Defects Detection

Author: Robert V. Goldstein

language: en

Publisher: Springer Science & Business Media

Release Date: 2006-02-21


DOWNLOAD





Among the variety of wave motions one can single out surface wave pr- agation since these surface waves often adjust the features of the energy transfer in the continuum (system), its deformation and fracture. Predicted by Rayleigh in 1885, surface waves represent waves localized in the vicinity ofextendedboundaries(surfaces)of?uidsorelasticmedia. Intheidealcase of an isotropic elastic half-space while the Rayleigh waves propagate along the surface, the wave amplitude (displacement) in the transverse direction exponentially decays with increasing distance away from the surface. As a resulttheenergyofsurfaceperturbationsislocalizedbytheRayleighwaves within a relatively narrow layer beneath the surface. It is this property of the surface waves that leads to the resonance phenomena that accompany the motion of the perturbation sources (like surface loads) with velocities close to the Rayleigh one; (see e. g. , R. V. Goldstein. Rayleigh waves and resonance phenomena in elastic bodies. Journal of Applied Mathematics and Mechanics (PMM), 1965, v. 29, N 3, pp. 608-619). It is essential to note that resonance phenomena are also inherent to the elastic medium in the case where initially there are no free (unloaded) surfaces. However, they occur as a result of an external action accompanied by the violation of the continuity of certain physical quantities, e. g. , by crack nucleation and dynamic propagation. Note that the aforementioned resonance phenomena are related to the nature of the surface waves as homogeneous solutions (eigenfunctions) of the dynamic elasticity equations for a half-space (i. e. nonzero solutions at vanishing boundary conditions).

Surface Waves in Geomechanics: Direct and Inverse Modelling for Soils and Rocks


Surface Waves in Geomechanics: Direct and Inverse Modelling for Soils and Rocks

Author: Carlo G. Lai

language: en

Publisher: Springer Science & Business Media

Release Date: 2007-03-23


DOWNLOAD





Theories of surface waves develop since the end of XIX century and many fundamental problems like existence, phase and group velocities, attenuation (quality factor), mode conversion, etc. have been, in part successfully, solved within the framework of such simple models as ideal fluids^ or linear elasticity. However, a sufficiently complete presentation of this subject, particularly for solids, is still missing in the literature. The sole exception is the book of I. A. Viktorov^ which contains an extensive discussion of fundamental properties of surface waves in homogeneous and stratified linear elastic solids with particular emphasis on contributions of Russian scientists. Unfortunately, the book has never been translated to English and its Russian version is also hardly available. Practical applications of surface waves develop intensively since a much shorter period of time than theories even though the motivation of discoverers of surface waves such as Lord Rayleigh stems from their appearance in geophysics and seismology. Nowadays the growing interest in practical applications of surface waves stem from the following two main factors: surface waves are ideal for developing relatively cheap and convenient methods of nondestructive testing of various systems spanning from nanomaterials (e.g.

IUTAM Symposium on Recent Advances of Acoustic Waves in Solids


IUTAM Symposium on Recent Advances of Acoustic Waves in Solids

Author: Tsung-Tsong Wu

language: en

Publisher: Springer Science & Business Media

Release Date: 2010-09-08


DOWNLOAD





Rapid growth of the mobile communication market has triggered extensive research on the bulk as well as surface acoustic wave devices in the last decade. Quite a few important results on the modeling and simulation of Film Bulk Acoustic Resonator (FBAR) and Layered SAW devices were reported recently. The other recent advance of acoustic waves in solids is the so-called phononic crystals or phononic band-gap materials. Analogous to the band-gap of light in photonic crystals, acoustic waves in periodic elastic structures also exhibit band-gap. Important applications of phononic band gap materials can potentially be found with creating a vibration free environment in microstructures, and design of advanced acoustic frequency filter, etc. In addition to the wave electronics and phononic crystals, to facilitate the emerging needs in the quantitative nondestructive evaluation of materials, waves in anisotropic solids and/or electro-, magneto- interaction problems also regained much attention recently. Topics treated include: Waves in piezoelectric crystals; Simulation of advanced BAW and SAW devices; Analysis of band gaps in phononic structures; Experimental investigation of phononic structures; Waves in multilayered media;Waves in anisotropic solids and/or electro-, magneto- interaction problems.