Support Vector Machines For Pattern Classification


Download Support Vector Machines For Pattern Classification PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Support Vector Machines For Pattern Classification book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Support Vector Machines for Pattern Classification


Support Vector Machines for Pattern Classification

Author: Shigeo Abe

language: en

Publisher: Springer Science & Business Media

Release Date: 2005-12-28


DOWNLOAD





I was shocked to see a student’s report on performance comparisons between support vector machines (SVMs) and fuzzy classi?ers that we had developed withourbestendeavors.Classi?cationperformanceofourfuzzyclassi?erswas comparable, but in most cases inferior, to that of support vector machines. This tendency was especially evident when the numbers of class data were small. I shifted my research e?orts from developing fuzzy classi?ers with high generalization ability to developing support vector machine–based classi?ers. This book focuses on the application of support vector machines to p- tern classi?cation. Speci?cally, we discuss the properties of support vector machines that are useful for pattern classi?cation applications, several m- ticlass models, and variants of support vector machines. To clarify their - plicability to real-world problems, we compare performance of most models discussed in the book using real-world benchmark data. Readers interested in the theoretical aspect of support vector machines should refer to books such as [109, 215, 256, 257].

Support Vector Machines for Pattern Classification


Support Vector Machines for Pattern Classification

Author: Shigeo Abe

language: en

Publisher: Springer Science & Business Media

Release Date: 2010-07-23


DOWNLOAD





A guide on the use of SVMs in pattern classification, including a rigorous performance comparison of classifiers and regressors. The book presents architectures for multiclass classification and function approximation problems, as well as evaluation criteria for classifiers and regressors. Features: Clarifies the characteristics of two-class SVMs; Discusses kernel methods for improving the generalization ability of neural networks and fuzzy systems; Contains ample illustrations and examples; Includes performance evaluation using publicly available data sets; Examines Mahalanobis kernels, empirical feature space, and the effect of model selection by cross-validation; Covers sparse SVMs, learning using privileged information, semi-supervised learning, multiple classifier systems, and multiple kernel learning; Explores incremental training based batch training and active-set training methods, and decomposition techniques for linear programming SVMs; Discusses variable selection for support vector regressors.

Mathematical Programming and Game Theory for Decision Making


Mathematical Programming and Game Theory for Decision Making

Author: S. K. Neogy

language: en

Publisher: World Scientific

Release Date: 2008


DOWNLOAD





This edited book presents recent developments and state-of-the-art review in various areas of mathematical programming and game theory. It is a peer-reviewed research monograph under the ISI Platinum Jubilee Series on Statistical Science and Interdisciplinary Research. This volume provides a panoramic view of theory and the applications of the methods of mathematical programming to problems in statistics, finance, games and electrical networks. It also provides an important as well as timely overview of research trends and focuses on the exciting areas like support vector machines, bilevel programming, interior point method for convex quadratic programming, cooperative games, non-cooperative games and stochastic games. Researchers, professionals and advanced graduates will find the book an essential resource for current work in mathematical programming, game theory and their applications.