Sum Swerve

Download Sum Swerve PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Sum Swerve book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
A Gentle Introduction to Game Theory

The mathematical theory of games was first developed as a model for situations of conflict, whether actual or recreational. It gained widespread recognition when it was applied to the theoretical study of economics by von Neumann and Morgenstern in Theory of Games and Economic Behavior in the 1940s. The later bestowal in 1994 of the Nobel Prize in economics on Nash underscores the important role this theory has played in the intellectual life of the twentieth century. This volume is based on courses given by the author at the University of Kansas. The exposition is "gentle" because it requires only some knowledge of coordinate geometry; linear programming is not used. It is "mathematical" because it is more concerned with the mathematical solution of games than with their applications. Existing textbooks on the topic tend to focus either on the applications or on the mathematics at a level that makes the works inaccessible to most non-mathematicians. This book nicely fits in between these two alternatives. It discusses examples and completely solves them with tools that require no more than high school algebra. In this text, proofs are provided for both von Neumann's Minimax Theorem and the existence of the Nash Equilibrium in the $2 \times 2$ case. Readers will gain both a sense of the range of applications and a better understanding of the theoretical framework of these two deep mathematical concepts.
A.D. Alexandrov

A.D. Alexandrov is considered by many to be the father of intrinsic geometry, second only to Gauss in surface theory. That appraisal stems primarily from this masterpiece--now available in its entirely for the first time since its 1948 publication in Russian. Alexandrov's treatise begins with an outline of the basic concepts, definitions, and r
The Mathematics of Politics, Second Edition

It is because mathematics is often misunderstood, it is commonly believed it has nothing to say about politics. The high school experience with mathematics, for so many the lasting impression of the subject, suggests that mathematics is the study of numbers, operations, formulas, and manipulations of symbols. Those believing this is the extent of mathematics might conclude mathematics has no relevance to politics. This book counters this impression. The second edition of this popular book focuses on mathematical reasoning about politics. In the search for ideal ways to make certain kinds of decisions, a lot of wasted effort can be averted if mathematics can determine that finding such an ideal is actually impossible in the first place. In the first three parts of this book, we address the following three political questions: (1) Is there a good way to choose winners of elections? (2) Is there a good way to apportion congressional seats? (3) Is there a good way to make decisions in situations of conflict and uncertainty? In the fourth and final part of this book, we examine the Electoral College system that is used in the United States to select a president. There we bring together ideas that are introduced in each of the three earlier parts of the book.