Success In Evolutionary Computation

Download Success In Evolutionary Computation PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Success In Evolutionary Computation book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Success in Evolutionary Computation

Author: Yin Shan
language: en
Publisher: Springer Science & Business Media
Release Date: 2008-02-29
Darwinian evolutionary theory is one of the most important theories in human history for it has equipped us with a valuable tool to understand the amazing world around us. There can be little surprise, therefore, that Evolutionary Computation (EC), inspired by natural evolution, has been so successful in providing high quality solutions in a large number of domains. EC includes a number of techniques, such as Genetic Algorithms, Genetic Programming, Evolution Strategy and Evolutionary Programming, which have been used in a diverse range of highly successful applications. This book brings together some of these EC applications in fields including electronics, telecommunications, health, bioinformatics, supply chain and other engineering domains, to give the audience, including both EC researchers and practitioners, a glimpse of this exciting rapidly evolving field.
Success in Evolutionary Computation

Darwinian evolutionary theory is one of the most important theories in human history for it has equipped us with a valuable tool to understand the amazing world around us. There can be little surprise, therefore, that Evolutionary Computation (EC), inspired by natural evolution, has been so successful in providing high quality solutions in a large number of domains. EC includes a number of techniques, such as Genetic Algorithms, Genetic Programming, Evolution Strategy and Evolutionary Programming, which have been used in a diverse range of highly successful applications. This book brings together some of these EC applications in fields including electronics, telecommunications, health, bioinformatics, supply chain and other engineering domains, to give the audience, including both EC researchers and practitioners, a glimpse of this exciting rapidly evolving field.
Theory of Evolutionary Computation

This edited book reports on recent developments in the theory of evolutionary computation, or more generally the domain of randomized search heuristics. It starts with two chapters on mathematical methods that are often used in the analysis of randomized search heuristics, followed by three chapters on how to measure the complexity of a search heuristic: black-box complexity, a counterpart of classical complexity theory in black-box optimization; parameterized complexity, aimed at a more fine-grained view of the difficulty of problems; and the fixed-budget perspective, which answers the question of how good a solution will be after investing a certain computational budget. The book then describes theoretical results on three important questions in evolutionary computation: how to profit from changing the parameters during the run of an algorithm; how evolutionary algorithms cope with dynamically changing or stochastic environments; and how population diversity influences performance. Finally, the book looks at three algorithm classes that have only recently become the focus of theoretical work: estimation-of-distribution algorithms; artificial immune systems; and genetic programming. Throughout the book the contributing authors try to develop an understanding for how these methods work, and why they are so successful in many applications. The book will be useful for students and researchers in theoretical computer science and evolutionary computing.