Subplane Covered Nets

Download Subplane Covered Nets PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Subplane Covered Nets book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Subplane Covered Nets

This work confronts the question of geometric processes of derivation, specifically the derivation of affine planes - keying in on construction techniques and types of transformations in which lines of a newly-created plane can be understood as subplanes of the original plane. The book provides a theory of subplane covered nets without restriction to the finite case or imposing commutativity conditions.
Geometry of Derivation with Applications

Geometry of Derivation with Applications is the fifth work in a longstanding series of books on combinatorial geometry (Subplane Covered Nets, Foundations of Translation Planes, Handbook of Finite Translation Planes, and Combinatorics of Spreads and Parallelisms). Like its predecessors, this book will primarily deal with connections to the theory of derivable nets and translation planes in both the finite and infinite cases. Translation planes over non-commutative skewfields have not traditionally had a significant representation in incidence geometry, and derivable nets over skewfields have only been marginally understood. Both are deeply examined in this volume, while ideas of non-commutative algebra are also described in detail, with all the necessary background given a geometric treatment. The book builds upon over twenty years of work concerning combinatorial geometry, charted across four previous books and is suitable as a reference text for graduate students and researchers. It contains a variety of new ideas and generalizations of established work in finite affine geometry and is replete with examples and applications.
Combinatorics of Spreads and Parallelisms

Combinatorics of Spreads and Parallelisms covers all known finite and infinite parallelisms as well as the planes comprising them. It also presents a complete analysis of general spreads and partitions of vector spaces that provide groups enabling the construction of subgeometry partitions of projective spaces.The book describes general partitions