Submodular Functions And Optimization

Download Submodular Functions And Optimization PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Submodular Functions And Optimization book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Submodular Functions and Optimization

It has widely been recognized that submodular functions play essential roles in efficiently solvable combinatorial optimization problems. Since the publication of the 1st edition of this book fifteen years ago, submodular functions have been showing further increasing importance in optimization, combinatorics, discrete mathematics, algorithmic computer science, and algorithmic economics, and there have been made remarkable developments of theory and algorithms in submodular functions. The 2nd edition of the book supplements the 1st edition with a lot of remarks and with new two chapters: "Submodular Function Minimization" and "Discrete Convex Analysis." The present 2nd edition is still a unique book on submodular functions, which is essential to students and researchers interested in combinatorial optimization, discrete mathematics, and discrete algorithms in the fields of mathematics, operations research, computer science, and economics. - Self-contained exposition of the theory of submodular functions - Selected up-to-date materials substantial to future developments - Polyhedral description of Discrete Convex Analysis - Full description of submodular function minimization algorithms - Effective insertion of figures - Useful in applied mathematics, operations research, computer science, and economics
Submodular Functions and Optimization

The importance of submodular functions has been widely recognized in recent years in combinatorial optimization. This is the first book devoted to the exposition of the theory of submodular functions from an elementary technical level to an advanced one. A unifying view of the theory is shown by means of base polyhedra and duality for submodular and supermodular systems. Among the subjects treated are: neoflows (submodular flows, independent flows, polymatroidal flows), submodular analysis (submodular programs, duality, Lagrangian functions, principal partitions), nonlinear optimization with submodular constraints (lexicographically optimal bases, fair resource allocation). Special emphasis is placed on the constructive aspects of the theory, which lead to practical, efficient algorithms.
Learning with Submodular Functions

Submodular functions are relevant to machine learning for at least two reasons: (1) some problems may be expressed directly as the optimization of submodular functions and (2) the Lovász extension of submodular functions provides a useful set of regularization functions for supervised and unsupervised learning. In this monograph, we present the theory of submodular functions from a convex analysis perspective, presenting tight links between certain polyhedra, combinatorial optimization and convex optimization problems. In particular, we show how submodular function minimization is equivalent to solving a wide variety of convex optimization problems. This allows the derivation of new efficient algorithms for approximate and exact submodular function minimization with theoretical guarantees and good practical performance. By listing many examples of submodular functions, we review various applications to machine learning, such as clustering, experimental design, sensor placement, graphical model structure learning or subset selection, as well as a family of structured sparsity-inducing norms that can be derived and used from submodular functions.