Subdifferentials

Download Subdifferentials PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Subdifferentials book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Subdifferentials

Author: A.G. Kusraev
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
The subject of the present book is sub differential calculus. The main source of this branch of functional analysis is the theory of extremal problems. For a start, we explicate the origin and statement of the principal problems of sub differential calculus. To this end, consider an abstract minimization problem formulated as follows: x E X, f(x) --+ inf. Here X is a vector space and f : X --+ iR is a numeric function taking possibly infinite values. In these circumstances, we are usually interested in the quantity inf f( x), the value of the problem, and in a solution or an optimum plan of the problem (i. e. , such an x that f(x) = inf f(X», if the latter exists. It is a rare occurrence to solve an arbitrary problem explicitly, i. e. to exhibit the value of the problem and one of its solutions. In this respect it becomes necessary to simplify the initial problem by reducing it to somewhat more manageable modifications formulated with the details of the structure of the objective function taken in due account. The conventional hypothesis presumed in attempts at theoretically approaching the reduction sought is as follows. Introducing an auxiliary function 1, one considers the next problem: x EX, f(x) -l(x) --+ inf. Furthermore, the new problem is assumed to be as complicated as the initial prob lem provided that 1 is a linear functional over X, i. e.
Nonlinear Analysis, Differential Equations and Control

Author: F.H. Clarke
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
Recent years have witnessed important developments in those areas of the mathematical sciences where the basic model under study is a dynamical system such as a differential equation or control process. Many of these recent advances were made possible by parallel developments in nonlinear and nonsmooth analysis. The latter subjects, in general terms, encompass differential analysis and optimization theory in the absence of traditional linearity, convexity or smoothness assumptions. In the last three decades it has become increasingly recognized that nonlinear and nonsmooth behavior is naturally present and prevalent in dynamical models, and is therefore significant theoretically. This point of view has guided us in the organizational aspects of this ASI. Our goals were twofold: We intended to achieve "cross fertilization" between mathematicians who were working in a diverse range of problem areas, but who all shared an interest in nonlinear and nonsmooth analysis. More importantly, it was our goal to expose a young international audience (mainly graduate students and recent Ph. D. 's) to these important subjects. In that regard, there were heavy pedagogical demands placed upon the twelve speakers of the ASI, in meeting the needs of such a gathering. The talks, while exposing current areas of research activity, were required to be as introductory and comprehensive as possible. It is our belief that these goals were achieved, and that these proceedings bear this out. Each of the twelve speakers presented a mini-course of four or five hours duration.
Nonlinear Analysis and Optimization II

This volume is the second of two volumes representing leading themes of current research in nonlinear analysis and optimization. The articles are written by prominent researchers in these two areas and bring the readers, advanced graduate students and researchers alike, to the frontline of the vigorous research in important fields of mathematics. This volume contains articles on optimization. Topics covered include the calculus of variations, constrained optimization problems, mathematical economics, metric regularity, nonsmooth analysis, optimal control, subdifferential calculus, time scales and transportation traffic. The companion volume (Contemporary Mathematics, Volume 513) is devoted to nonlinear analysis. This book is co-published with Bar-Ilan University (Ramat-Gan, Israel). Table of Contents: J.-P. Aubin and S. Martin -- Travel time tubes regulating transportation traffic; R. Baier and E. Farkhi -- The directed subdifferential of DC functions; Z. Balanov, W. Krawcewicz, and H. Ruan -- Periodic solutions to $O(2)$-symmetric variational problems: $O(2) \times S^1$- equivariant gradient degree approach; J. F. Bonnans and N. P. Osmolovskii -- Quadratic growth conditions in optimal control problems; J. M. Borwein and S. Sciffer -- An explicit non-expansive function whose subdifferential is the entire dual ball; G. Buttazzo and G. Carlier -- Optimal spatial pricing strategies with transportation costs; R. A. C. Ferreira and D. F. M. Torres -- Isoperimetric problems of the calculus of variations on time scales; M. Foss and N. Randriampiry -- Some two-dimensional $\mathcal A$-quasiaffine functions; F. Giannessi, A. Moldovan, and L. Pellegrini -- Metric regular maps and regularity for constrained extremum problems; V. Y. Glizer -- Linear-quadratic optimal control problem for singularly perturbed systems with small delays; T. Maruyama -- Existence of periodic solutions for Kaldorian business fluctuations; D. Mozyrska and E. Paw'uszewicz -- Delta and nabla monomials and generalized polynomial series on time scales; D. Pallaschke and R. Urba'ski -- Morse indexes for piecewise linear functions; J.-P. Penot -- Error bounds, calmness and their applications in nonsmooth analysis; F. Rampazzo -- Commutativity of control vector fields and ""inf-commutativity""; A. J. Zaslavski -- Stability of exact penalty for classes of constrained minimization problems in finite-dimensional spaces. (CONM/514)