Studying Simulations With Distributed Cognition

Download Studying Simulations With Distributed Cognition PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Studying Simulations With Distributed Cognition book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Studying Simulations with Distributed Cognition

Author: Jonas Rybing
language: en
Publisher: Linköping University Electronic Press
Release Date: 2018-03-20
Simulations are frequently used techniques for training, performance assessment, and prediction of future outcomes. In this thesis, the term “human-centered simulation” is used to refer to any simulation in which humans and human cognition are integral to the simulation’s function and purpose (e.g., simulation-based training). A general problem for human-centered simulations is to capture the cognitive processes and activities of the target situation (i.e., the real world task) and recreate them accurately in the simulation. The prevalent view within the simulation research community is that cognition is internal, decontextualized computational processes of individuals. However, contemporary theories of cognition emphasize the importance of the external environment, use of tools, as well as social and cultural factors in cognitive practice. Consequently, there is a need for research on how such contemporary perspectives can be used to describe human-centered simulations, re-interpret theoretical constructs of such simulations, and direct how simulations should be modeled, designed, and evaluated. This thesis adopts distributed cognition as a framework for studying human-centered simulations. Training and assessment of emergency medical management in a Swedish context using the Emergo Train System (ETS) simulator was adopted as a case study. ETS simulations were studied and analyzed using the distributed cognition for teamwork (DiCoT) methodology with the goal of understanding, evaluating, and testing the validity of the ETS simulator. Moreover, to explore distributed cognition as a basis for simulator design, a digital re-design of ETS (DIGEMERGO) was developed based on the DiCoT analysis. The aim of the DIGEMERGO system was to retain core distributed cognitive features of ETS, to increase validity, outcome reliability, and to provide a digital platform for emergency medical studies. DIGEMERGO was evaluated in three separate studies; first, a usefulness, usability, and facevalidation study that involved subject-matter-experts; second, a comparative validation study using an expert-novice group comparison; and finally, a transfer of training study based on self-efficacy and management performance. Overall, the results showed that DIGEMERGO was perceived as a useful, immersive, and promising simulator – with mixed evidence for validity – that demonstrated increased general self-efficacy and management performance following simulation exercises. This thesis demonstrates that distributed cognition, using DiCoT, is a useful framework for understanding, designing and evaluating simulated environments. In addition, the thesis conceptualizes and re-interprets central constructs of human-centered simulation in terms of distributed cognition. In doing so, the thesis shows how distributed cognitive processes relate to validity, fidelity, functionality, and usefulness of human-centered simulations. This thesis thus provides a new understanding of human-centered simulations that is grounded in distributed cognition theory.
Distributed cognition in learning and behavioral change – based on human and artificial intelligence

Author: Dietrich Albert
language: en
Publisher: Frontiers Media SA
Release Date: 2024-01-08
Machine Learning-Based Bug Handling in Large-Scale Software Development

Author: Leif Jonsson
language: en
Publisher: Linköping University Electronic Press
Release Date: 2018-05-17
This thesis investigates the possibilities of automating parts of the bug handling process in large-scale software development organizations. The bug handling process is a large part of the mostly manual, and very costly, maintenance of software systems. Automating parts of this time consuming and very laborious process could save large amounts of time and effort wasted on dealing with bug reports. In this thesis we focus on two aspects of the bug handling process, bug assignment and fault localization. Bug assignment is the process of assigning a newly registered bug report to a design team or developer. Fault localization is the process of finding where in a software architecture the fault causing the bug report should be solved. The main reason these tasks are not automated is that they are considered hard to automate, requiring human expertise and creativity. This thesis examines the possi- bility of using machine learning techniques for automating at least parts of these processes. We call these automated techniques Automated Bug Assignment (ABA) and Automatic Fault Localization (AFL), respectively. We treat both of these problems as classification problems. In ABA, the classes are the design teams in the development organization. In AFL, the classes consist of the software components in the software architecture. We focus on a high level fault localization that it is suitable to integrate into the initial support flow of large software development organizations. The thesis consists of six papers that investigate different aspects of the AFL and ABA problems. The first two papers are empirical and exploratory in nature, examining the ABA problem using existing machine learning techniques but introducing ensembles into the ABA context. In the first paper we show that, like in many other contexts, ensembles such as the stacked generalizer (or stacking) improves classification accuracy compared to individual classifiers when evaluated using cross fold validation. The second paper thor- oughly explore many aspects such as training set size, age of bug reports and different types of evaluation of the ABA problem in the context of stacking. The second paper also expands upon the first paper in that the number of industry bug reports, roughly 50,000, from two large-scale industry software development contexts. It is still as far as we are aware, the largest study on real industry data on this topic to this date. The third and sixth papers, are theoretical, improving inference in a now classic machine learning tech- nique for topic modeling called Latent Dirichlet Allocation (LDA). We show that, unlike the currently dominating approximate approaches, we can do parallel inference in the LDA model with a mathematically correct algorithm, without sacrificing efficiency or speed. The approaches are evaluated on standard research datasets, measuring various aspects such as sampling efficiency and execution time. Paper four, also theoretical, then builds upon the LDA model and introduces a novel supervised Bayesian classification model that we call DOLDA. The DOLDA model deals with both textual content and, structured numeric, and nominal inputs in the same model. The approach is evaluated on a new data set extracted from IMDb which have the structure of containing both nominal and textual data. The model is evaluated using two approaches. First, by accuracy, using cross fold validation. Second, by comparing the simplicity of the final model with that of other approaches. In paper five we empirically study the performance, in terms of prediction accuracy, of the DOLDA model applied to the AFL problem. The DOLDA model was designed with the AFL problem in mind, since it has the exact structure of a mix of nominal and numeric inputs in combination with unstructured text. We show that our DOLDA model exhibits many nice properties, among others, interpretability, that the research community has iden- tified as missing in current models for AFL.