Structured Peer To Peer Systems

Download Structured Peer To Peer Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Structured Peer To Peer Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Peer-to-Peer Systems and Applications

Author: Ralf Steinmetz
language: en
Publisher: Springer Science & Business Media
Release Date: 2005-09-29
Starting with Napster and Gnutella, peer-to-peer systems became an integrated part of the Internet fabric attracting millions of users. This book provides an introduction to the field. It draws together prerequisites from various fields, presents techniques and methodologies, and gives an overview on the applications of the peer-to-peer paradigm.
Structured Peer-to-Peer Systems

Author: Dmitry Korzun
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-11-12
The field of structured P2P systems has seen fast growth upon the introduction of Distributed Hash Tables (DHTs) in the early 2000s. The first proposals, including Chord, Pastry, Tapestry, were gradually improved to cope with scalability, locality and security issues. By utilizing the processing and bandwidth resources of end users, the P2P approach enables high performance of data distribution which is hard to achieve with traditional client-server architectures. The P2P computing community is also being actively utilized for software updates to the Internet, P2PSIP VoIP, video-on-demand, and distributed backups. The recent introduction of the identifier-locator split proposal for future Internet architectures poses another important application for DHTs, namely mapping between host permanent identity and changing IP address. The growing complexity and scale of modern P2P systems requires the introduction of hierarchy and intelligence in routing of requests. Structured Peer-to-Peer Systems covers fundamental issues in organization, optimization, and tradeoffs of present large-scale structured P2P systems, as well as, provides principles, analytical models, and simulation methods applicable in designing future systems. Part I presents the state-of-the-art of structured P2P systems, popular DHT topologies and protocols, and the design challenges for efficient P2P network topology organization, routing, scalability, and security. Part II shows that local strategies with limited knowledge per peer provide the highest scalability level subject to reasonable performance and security constraints. Although the strategies are local, their efficiency is due to elements of hierarchical organization, which appear in many DHT designs that traditionally are considered as flat ones. Part III describes methods to gradually enhance the local view limit when a peer is capable to operate with larger knowledge, still partial, about the entire system.These methods were formed in the evolution of hierarchical organization from flat DHT networks to hierarchical DHT architectures, look-ahead routing, and topology-aware ranking. Part IV highlights some known P2P-based experimental systems and commercial applications in the modern Internet. The discussion clarifies the importance of P2P technology for building present and future Internet systems.
Peer-to-Peer Computing

Author: Quang Hieu Vu
language: en
Publisher: Springer Science & Business Media
Release Date: 2009-10-20
Peer-to-peer (P2P) technology, or peer computing, is a paradigm that is viewed as a potential technology for redesigning distributed architectures and, consequently, distributed processing. Yet the scale and dynamism that characterize P2P systems demand that we reexamine traditional distributed technologies. A paradigm shift that includes self-reorganization, adaptation and resilience is called for. On the other hand, the increased computational power of such networks opens up completely new applications, such as in digital content sharing, scientific computation, gaming, or collaborative work environments. In this book, Vu, Lupu and Ooi present the technical challenges offered by P2P systems, and the means that have been proposed to address them. They provide a thorough and comprehensive review of recent advances on routing and discovery methods; load balancing and replication techniques; security, accountability and anonymity, as well as trust and reputation schemes; programming models and P2P systems and projects. Besides surveying existing methods and systems, they also compare and evaluate some of the more promising schemes. The need for such a book is evident. It provides a single source for practitioners, researchers and students on the state of the art. For practitioners, this book explains best practice, guiding selection of appropriate techniques for each application. For researchers, this book provides a foundation for the development of new and more effective methods. For students, it is an overview of the wide range of advanced techniques for realizing effective P2P systems, and it can easily be used as a text for an advanced course on Peer-to-Peer Computing and Technologies, or as a companion text for courses on various subjects, such as distributed systems, and grid and cluster computing.