Structure And Dynamics Of Non Rigid Molecular Systems


Download Structure And Dynamics Of Non Rigid Molecular Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Structure And Dynamics Of Non Rigid Molecular Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Structure and Dynamics of Non-Rigid Molecular Systems


Structure and Dynamics of Non-Rigid Molecular Systems

Author: Y.G. Smeyers

language: en

Publisher: Springer Science & Business Media

Release Date: 2012-12-06


DOWNLOAD





This volume contains a selection of scientific papers related to the structure and dynamics of non-rigid molecules. This frontline topic was born a few decades ago, when Longuet-Higgins proposed his famous theory of Molecular Symmetry Groups (Mol. Phys. 6, (1962) 457). Unfortunately, since this early paper, very few publications have been devoted to the study of non-rigid molecules. Let us mention some books which dedicate some chapters to them: Induced Representations in Crystals and Molecules, by S. L. Altmann, Academic Publishers, 1977; Molecular Symmetry and Spectroscopy, by P. R. Bunker, Academic Publishers, 1979; and finally Large Amplitude Motion in Molecules, Vols. I and II, by several authors, Springer Verlag, 1979. More recently an International Symposium on Non-Rigid Molecules was held in Paris, France, from 1-7 July 1982, the proceedings of which were published in the volume entitled Symmetries and Properties of Non-Rigid Molecules. A Comprehensive Survey, edited by J. Maruani et al., Elsevier, 1983. Finally, we should mention the very specialized work The Permutational Approach to Dynamic Stereochemistry, by J. Brocas et al., McGraw-Hill, 1983. The purpose of this book is to fill in this information on the structure and dynamics of non-rigid systems. To this aim, we have gathered a collection of recent papers written by the most qualified specialists in the world, covering a large field from van der Waals molecules to inorganic complexes and organic polyrotor molecules, as well as considering statistical and dynamic aspects.

Structure and Dynamics of Molecular Systems


Structure and Dynamics of Molecular Systems

Author: R. Daudel

language: en

Publisher: Springer Science & Business Media

Release Date: 2012-12-06


DOWNLOAD





This volume is the first of a set of two which contain the invited lectures given at the international seminar of the same title held at the Centre de Mecanique Ondulatoire Appliquee du Centre National de la Recherche Scientifique in Paris (France) from October 1983 to May 1985. They are intended to provide a survey of topics of current interest relative to the structure and the dynamics of molecular systems. The papers have been selected on the basis of their relevance to the following four topics: i) molecular conformations and transformations; ii) molecular relaxation and motion; iii) charge, spin and momentum distributions in molecular solids; iv) collective phenomena in condensed matter. The first volume deals f)1ostly with the first two topics, the second volume mostly with the last two. Each volume consists of about fifteen self contained, reference contributions covering recent achievements in active branches of molecular physics and physical chemistry. The first four papers of the present volume deal with theoretical aspects of structure and reactivity problems, with particular attention being paid to topology considerations, which have joined symmetry con siderations as an important tool in approaching chemistry problems. The treatment of nuclear probability density distributions is performed on a model basis for a simple system, even though it has come to the attention of theoreticians through experimental results for complex systems.

Structures and Conformations of Non-Rigid Molecules


Structures and Conformations of Non-Rigid Molecules

Author: J. Laane

language: en

Publisher: Springer Science & Business Media

Release Date: 2012-12-06


DOWNLOAD





From the beginnings of modern chemistry, molecular structure has been a lively area of research and speculation. For more than half a century spectroscopy and other methods have been available to characterize the structures and shapes of molecules, particularly those that are rigid. However, most molecules are at least to some degree non-rigid and this non-rigidity plays an important role in such diverse areas as biological activity, energy transfer, and chemical reactivity. In addition, the large-amplitude vibrations present in non-rigid molecules give rise to unusual low-energy vibrational level patterns which have a dramatic effect on the thermodynamic properties of these systems. Only in recent years has a coherent picture of the energetics and dynamics of the conformational changes inherent in non-rigid (and semi-rigid) molecules begun to emerge. Advances have been made in a number of different experimental areas: vibrational (infrared and Raman) spectroscopy, rotational (microwave) spectroscopy, electron diffraction, and, most recently, laser techniques probing both the ground and excited electronic states. Theoretically, the proliferation of powerful computers coupled with scientific insight has allowed both empirical and ab initio methods to increase our understanding of the forces responsible for the structures and energies of non-rigid systems. The development of theory (group theoretical methods and potential energy surfaces) to understand the unique characteristics of the spectra of these floppy molecules has also been necessary to reach our present level of understanding. The thirty chapters in this volume contributed by the key speakers at the Workshop are divided over the various areas. Both vibrational and rotational spectroscopy have been effective at determining the potential energy surfaces for non-rigid molecules, often in a complementary manner. Recent laser fluorescence work has extended these types of studies to electronic excited states. Electronic diffraction methods provide radial distribution functions from which both molecular structures and compositions of conformational mixtures can be found. Ab initio calculations have progressed substantially over the past few years, and, when carried out at a sufficiently high level, can accurately reproduce (or predict ahead of time) experimental findings. Much of the controversy of the ARW related to the question of when an ab initio is reliable. Since the computer programs are readily available, many poor calculations have been carried out. However, excellent results can be obtained from computations when properly done. A similar situation exists for experimental analyses. The complexities of non-rigid molecules are many, but major strides have been taken to understand their structures and conformational processes.