Strategies For Radar Communication Spectrum Sharing


Download Strategies For Radar Communication Spectrum Sharing PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Strategies For Radar Communication Spectrum Sharing book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Strategies for Radar-Communication Spectrum Sharing


Strategies for Radar-Communication Spectrum Sharing

Author: Ammar Ahmed

language: en

Publisher:

Release Date: 2021


DOWNLOAD





Spectrum sharing has become increasingly important since the past decade due to the ongoing congestion of spectral resources. Higher data rates in wireless communications require expansion of existing frequency allocations. Significant research efforts have been made in the direction of cognitive radio to effectively manage the existing frequency usage. Recently, coexistence of multiple platforms within the same frequency bands is considered effective to mitigate spectral congestion. This requires both systems to work collaboratively to mitigate their mutual interference. This challenging problem can be significantly simplified if both systems are controlled by the same entity. Joint radar-communication (JRC) system is such an example where radar and communication system objectives are achieved by the same physical platform. In this dissertation, we consider three different types of JRC systems. These JRC systems respectively exploit a single transmit antenna, an antenna array for beamforming, and a distributed JRC network, and develop novel signal processing techniques to optimize the performance of these systems. Special attention is given to the resource optimization objectives and numerous resource allocation schemes are developed and investigated. First, we consider a single transmit antenna-based JRC system which exploits dual-purpose transmit orthogonal frequency division multiplexing (OFDM) waveforms to perform radar and communication objectives simultaneously. We optimize the power allocation of the OFDM subcarriers based on the frequency-sensitive target response and communication channel characteristics. For this purpose, we employ mutual information as the optimization metric. In the simulation examples considered for this system, we observed that the JRC system enjoys approximately 20\% improvement in the performance of communication subsystem with a mere 5\% reduction in radar subsystem performance. Second, we propose a quadratic amplitude modulation (QAM) based sidelobe modulation scheme for beamforming-based JRC systems which enhances the communication data rate by enabling a novel multiple access strategy. The main principle of this proposed strategy lies in enabling the beamformer to transmit signals with distinct amplitudes and phases in different directions. We also investigate optimal power allocation for such a spectrum sharing approach by employing a spatial power control-based beamforming approach. Furthermore, the robustness of these beamforming-based JRC systems is improved using chance constrained programming. In this context, we observe that the chance constrained optimization can be relaxed to form a deterministic and convex problem by employing the statistical profile of the communication channels. When dealing with JRC systems that are equipped with more antennas than the number of radio frequency chains, we perform the resource optimization in terms of minimized power usage and optimal selection of antennas resulting in an efficient utilization of hardware up-conversion chains. In the simulation examples considered for these schemes, we observe that, even with a reduction of nearly 30\% of the transmit antennas, the beamforming-based JRC system is able to perform the required radar and communication tasks without any disadvantage. Our last contribution is on a distributed JRC system, which is the first effort in this research direction, enabling spectrum sharing for networked radar systems coexisting with the communication systems. We devise a power allocation strategy for such a system by employing convex optimization techniques. In this strategy, the target localization error and the Shannon capacity are respectively considered as the optimization criteria for radar and communication systems. For the simulation example considered in this case, we observe that the proposed resource allocation strategy achieves a communication performance that was approximately 5 times greater than that achieved by the radar-only counterpart. Moreover, the target localization performance achieved by the JRC system using the proposed approach was approximately 4 times better than the performance achieved by the communication-only approach.

Signal Processing for Joint Radar Communications


Signal Processing for Joint Radar Communications

Author: Kumar Vijay Mishra

language: en

Publisher: John Wiley & Sons

Release Date: 2024-04-09


DOWNLOAD





Signal Processing for Joint Radar Communications A one-stop, comprehensive source for the latest research in joint radar communications In Signal Processing for Joint Radar Communications, four eminent electrical engineers deliver a practical and informative contribution to the diffusion of newly developed joint radar communications (JRC) tools into the sensing and communications communities. This book illustrates recent successes in applying modern signal processing theories to core problems in JRC. The book offers new results on algorithms and applications of JRC from diverse perspectives, including waveform design, physical layer processing, privacy, security, hardware prototyping, resource allocation, and sampling theory. The distinguished editors bring together contributions from more than 40 leading JRC researchers working on remote sensing, electromagnetics, optimization, signal processing, and beyond 5G wireless networks. The included resources provide an in-depth mathematical treatment of relevant signal processing tools and computational methods allowing readers to take full advantage of JRC systems. Readers will also find: Thorough introductions to fundamental limits and background on JRC theory and applications, including dual-function radar communications, cooperative JRC, distributed JRC, and passive JRC Comprehensive explorations of JRC processing via waveform analyses, interference mitigation, and modeling with jamming and clutter Practical discussions of information-theoretic, optimization, and networking aspects of JRC In-depth examinations of JRC applications in cutting-edge scenarios including automotive systems, intelligent reflecting surfaces, and secure parameter estimation Perfect for researchers and professionals in the fields of radar, signal processing, communications, information theory, networking, and electronic warfare, Signal Processing for Joint Radar Communications will also earn a place in the libraries of engineers working in the defense, aerospace, wireless communications, and automotive industries.

Spectrum Sharing


Spectrum Sharing

Author: Constantinos B. Papadias

language: en

Publisher: John Wiley & Sons

Release Date: 2020-06-02


DOWNLOAD





Combines the latest trends in spectrum sharing, both from a research and a standards/regulation/experimental standpoint Written by noted professionals from academia, industry, and research labs, this unique book provides a comprehensive treatment of the principles and architectures for spectrum sharing in order to help with the existing and future spectrum crunch issues. It presents readers with the most current standardization trends, including CEPT / CEE, eLSA, CBRS, MulteFire, LTE-Unlicensed (LTE-U), LTE WLAN integration with Internet Protocol security tunnel (LWIP), and LTE/Wi-Fi aggregation (LWA), and offers substantial trials and experimental results, as well as system-level performance evaluation results. The book also includes a chapter focusing on spectrum policy reinforcement and another on the economics of spectrum sharing. Beginning with the historic form of cognitive radio, Spectrum Sharing: The Next Frontier in Wireless Networks continues with current standardized forms of spectrum sharing, and reviews all of the technical ingredients that may arise in spectrum sharing approaches. It also looks at policy and implementation aspects and ponders the future of the field. White spaces and data base-assisted spectrum sharing are discussed, as well as the licensed shared access approach and cooperative communication techniques. The book also covers reciprocity-based beam forming techniques for spectrum sharing in MIMO networks; resource allocation for shared spectrum networks; large scale wireless spectrum monitoring; and much more. Contains all the latest standardization trends, such as CEPT / ECC, eLSA, CBRS, MulteFire, LTE-Unlicensed (LTE-U), LTE WLAN integration with Internet Protocol security tunnel (LWIP) and LTE/Wi-Fi aggregation (LWA) Presents a number of emerging technologies for future spectrum sharing (collaborative sensing, cooperative communication, reciprocity-based beamforming, etc.), as well as novel spectrum sharing paradigms (e.g. in full duplex and radar systems) Includes substantial trials and experimental results, as well as system-level performance evaluation results Contains a dedicated chapter on spectrum policy reinforcement and one on the economics of spectrum sharing Edited by experts in the field, and featuring contributions by respected professionals in the field world wide Spectrum Sharing: The Next Frontier in Wireless Networks is highly recommended for graduate students and researchers working in the areas of wireless communications and signal processing engineering. It would also benefit radio communications engineers and practitioners.