Storing Clocked Programs Inside Dna


Download Storing Clocked Programs Inside Dna PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Storing Clocked Programs Inside Dna book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Storing Clocked Programs Inside DNA


Storing Clocked Programs Inside DNA

Author: Jessica Chang

language: en

Publisher: Springer Nature

Release Date: 2022-05-31


DOWNLOAD





In the history of modern computation, large mechanical calculators preceded computers. A person would sit there punching keys according to a procedure and a number would eventually appear. Once calculators became fast enough, it became obvious that the critical path was the punching rather than the calculation itself. That is what made the stored program concept vital to further progress. Once the instructions were stored in the machine, the entire computation could run at the speed of the machine. This book shows how to do the same thing for DNA computing. Rather than asking a robot or a person to pour in specific strands at different times in order to cause a DNA computation to occur (by analogy to a person punching numbers and operations into a mechanical calculator), the DNA instructions are stored within the solution and guide the entire computation. We show how to store straight line programs, conditionals, loops, and a rudimentary form of subroutines. To achieve this goal, the book proposes a complete language for describing the intrinsic topology of DNA complexes and nanomachines, along with the dynamics of such a system. We then describe dynamic behavior using a set of basic transitions, which operate on a small neighborhood within a complex in a well-defined way. These transitions can be formalized as purely syntactical functions of the string representations. Building on that foundation, the book proposes a novel machine motif which constitutes an instruction stack, allowing for the clocked release of an arbitrary sequence of DNA instruction or data strands. The clock mechanism is built of special strands of DNA called ""tick"" and ""tock."" Each time a ""tick"" and ""tock"" enter a DNA solution, a strand is released from an instruction stack (by analogy to the way in which as a clock cycle in an electronic computer causes a new instruction to enter a processing unit). As long as there remain strands on the stack, the next cycle will release a new instruction strand. Regardless of the actual strand or component to be released at any particular clock step, the ""tick"" and ""tock"" fuel strands remain the same, thus shifting the burden of work away from the end user of a machine and easing operation. Pre-loaded stacks enable the concept of a stored program to be realized as a physical DNA mechanism. A conceptual example is given of such a stack operating a walker device. The stack allows for a user to operate such a clocked walker by means of simple repetition of adding two fuel types, in contrast to the previous mechanism of adding a unique fuel -- at least 12 different types of strands -- for each step of the mechanism. We demonstrate by a series of experiments conducted in Ned Seeman's lab that it is possible to ""initialize"" a clocked stored program DNA machine. We end the book with a discussion of the design features of a programming language for clocked DNA programming. There is a lot left to do. Table of Contents: Introduction / Notation / A Topological Description of DNA Computing / Machines and Motifs / Experiment: Storing Clocked Programs in DNA / A Clocked DNA Programming Language

Automated Verification of Concurrent Search Structures


Automated Verification of Concurrent Search Structures

Author: Siddharth Krishna

language: en

Publisher: Springer Nature

Release Date: 2022-05-31


DOWNLOAD





Search structures support the fundamental data storage primitives on key-value pairs: insert a pair, delete by key, search by key, and update the value associated with a key. Concurrent search structures are parallel algorithms to speed access to search structures on multicore and distributed servers. These sophisticated algorithms perform fine-grained synchronization between threads, making them notoriously difficult to design correctly. Indeed, bugs have been found both in actual implementations and in the designs proposed by experts in peer-reviewed publications. The rapid development and deployment of these concurrent algorithms has resulted in a rift between the algorithms that can be verified by the state-of-the-art techniques and those being developed and used today. The goal of this book is to show how to bridge this gap in order to bring the certified safety of formal verification to high-performance concurrent search structures. Similar techniques and frameworks can be applied to concurrent graph and network algorithms beyond search structures.

Principles of Blockchain Systems


Principles of Blockchain Systems

Author: Antonio Fernández Anta

language: en

Publisher: Springer Nature

Release Date: 2022-05-31


DOWNLOAD





This book is the first to present the state of the art and provide technical focus on the latest advances in the foundations of blockchain systems. It is a collaborative work between specialists in cryptography, distributed systems, formal languages, and economics, and addresses hot topics in blockchains from a theoretical perspective: cryptographic primitives, consensus, formalization of blockchain properties, game theory applied to blockchains, and economical issues. This book reflects the expertise of the various authors, and is intended to benefit researchers, students, and engineers who seek an understanding of the theoretical foundations of blockchains.