Stochastic Systems And State Estimation

Download Stochastic Systems And State Estimation PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Stochastic Systems And State Estimation book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
State Estimation for Nonlinear Continuous–Discrete Stochastic Systems

Author: Gennady Yu. Kulikov
language: en
Publisher: Springer Nature
Release Date: 2024-09-06
This book addresses the problem of accurate state estimation in nonlinear continuous-time stochastic models with additive noise and discrete measurements. Its main focus is on numerical aspects of computation of the expectation and covariance in Kalman-like filters rather than on statistical properties determining a model of the system state. Nevertheless, it provides the sound theoretical background and covers all contemporary state estimation techniques beginning at the celebrated Kalman filter, including its versions extended to nonlinear stochastic models, and till the most advanced universal Gaussian filters with deterministically sampled mean and covariance. In particular, the authors demonstrate that, when applying such filtering procedures to stochastic models with strong nonlinearities, the use of adaptive ordinary differential equation solvers with automatic local and global error control facilities allows the discretization error—and consequently the state estimation error—to be reduced considerably. For achieving that, the variable-stepsize methods with automatic error regulation and stepsize selection mechanisms are applied to treating moment differential equations arisen. The implemented discretization error reduction makes the self-adaptive nonlinear Gaussian filtering algorithms more suitable for application and leads to the novel notion of accurate state estimation. The book also discusses accurate state estimation in mathematical models with sparse measurements. Of special interest in this regard, it provides a means for treating stiff stochastic systems, which often encountered in applied science and engineering, being exemplified by the Van der Pol oscillator in electrical engineering and the Oregonator model of chemical kinetics. Square-root implementations of all Kalman-like filters considered and explored in this book for state estimation in Ill-conditioned continuous–discrete stochastic systems attract the authors’ particular attention. This book covers both theoretical and applied aspects of numerical integration methods, including the concepts of approximation, convergence, stiffness as well as of local and global errors, suitably for applied scientists and engineers. Such methods serve as a basis for the development of accurate continuous–discrete extended, unscented, cubature and many other Kalman filtering algorithms, including the universal Gaussian methods with deterministically sampled expectation and covariance as well as their mixed-type versions. The state estimation procedures in this book are presented in the fashion of complete pseudo-codes, which are ready for implementation and use in MATLAB® or in any other computation platform. These are examined numerically and shown to outperform traditional variants of the Kalman-like filters in practical prediction/filtering tasks, including state estimations of stiff and/or ill-conditioned continuous–discrete nonlinear stochastic systems.
Control and State Estimation for Dynamical Network Systems with Complex Samplings

This book focuses on the control and state estimation problems for dynamical network systems with complex samplings subject to various network-induced phenomena. It includes a series of control and state estimation problems tackled under the passive sampling fashion. Further, it explains the effects from the active sampling fashion, i.e., event-based sampling is examined on the control/estimation performance, and novel design technologies are proposed for controllers/estimators. Simulation results are provided for better understanding of the proposed control/filtering methods. By drawing on a variety of theories and methodologies such as Lyapunov function, linear matrix inequalities, and Kalman theory, sufficient conditions are derived for guaranteeing the existence of the desired controllers and estimators, which are parameterized according to certain matrix inequalities or recursive matrix equations. Covers recent advances of control and state estimation for dynamical network systems with complex samplings from the engineering perspective Systematically introduces the complex sampling concept, methods, and application for the control and state estimation Presents unified framework for control and state estimation problems of dynamical network systems with complex samplings Exploits a set of the latest techniques such as linear matrix inequality approach, Vandermonde matrix approach, and trace derivation approach Explains event-triggered multi-rate fusion estimator, resilient distributed sampled-data estimator with predetermined specifications This book is aimed at researchers, professionals, and graduate students in control engineering and signal processing.