Stochastic Structural Optimization

Download Stochastic Structural Optimization PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Stochastic Structural Optimization book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Stochastic Structural Optimization

Stochastic Structural Optimization presents a comprehensive picture of robust design optimization of structures, focused on nonparametric stochastic-based methodologies. Good practical structural design accounts for uncertainty, for which reliability-based design offers a standard approach, usually incorporating assumptions on probability functions which are often unknown. By comparison, a worst-case approach with bounded support used as a robust design offers simplicity and a lower level of sensitivity. Linking structural optimization with these two approaches by a unified framework of non-parametric stochastic methodologies provides a rigorous theoretical background and high level of practicality. This text shows how to use this theoretical framework in civil and mechanical engineering practice to design a safe structure which accounts for uncertainty. Connects theory with practice in the robust design optimization of structures Advanced enough to support sound practical designs This book provides comprehensive coverage for engineers and graduate students in civil and mechanical engineering. Makoto Yamakawa is a Professor at Tokyo University of Science, and a member of the Advisory Board of the 2020 Asian Congress of Structural and Multidisciplinary Optimization. Makoto Ohsaki is a Professor at Kyoto University, Japan, treasurer of the International Association for Shell & Spatial Structures and former President of the Asian Society for Structural and Multidisciplinary Optimization.
Stochastic Structural Optimization

Stochastic Structural Optimization presents a comprehensive picture of robust design optimization of structures, focused on nonparametric stochastic-based methodologies. Good practical structural design accounts for uncertainty, for which reliability-based design offers a standard approach, usually incorporating assumptions on probability functions which are often unknown. By comparison, a worst-case approach with bounded support used as a robust design offers simplicity and a lower level of sensitivity. Linking structural optimization with these two approaches by a unified framework of non-parametric stochastic methodologies provides a rigorous theoretical background and high level of practicality. This text shows how to use this theoretical framework in civil and mechanical engineering practice to design a safe structure which accounts for uncertainty. Connects theory with practice in the robust design optimization of structures Advanced enough to support sound practical designs This book provides comprehensive coverage for engineers and graduate students in civil and mechanical engineering. Makoto Yamakawa is a Professor at Tokyo University of Science, and a member of the Advisory Board of the 2020 Asian Congress of Structural and Multidisciplinary Optimization. Makoto Ohsaki is a Professor at Kyoto University, Japan, treasurer of the International Association for Shell & Spatial Structures and former President of the Asian Society for Structural and Multidisciplinary Optimization.
Stochastic Multi-Stage Optimization

The focus of the present volume is stochastic optimization of dynamical systems in discrete time where - by concentrating on the role of information regarding optimization problems - it discusses the related discretization issues. There is a growing need to tackle uncertainty in applications of optimization. For example the massive introduction of renewable energies in power systems challenges traditional ways to manage them. This book lays out basic and advanced tools to handle and numerically solve such problems and thereby is building a bridge between Stochastic Programming and Stochastic Control. It is intended for graduates readers and scholars in optimization or stochastic control, as well as engineers with a background in applied mathematics.