Stochastic Simulation

Download Stochastic Simulation PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Stochastic Simulation book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Stochastic Simulation: Algorithms and Analysis

Author: Søren Asmussen
language: en
Publisher: Springer Science & Business Media
Release Date: 2007-07-14
Sampling-based computational methods have become a fundamental part of the numerical toolset of practitioners and researchers across an enormous number of different applied domains and academic disciplines. This book provides a broad treatment of such sampling-based methods, as well as accompanying mathematical analysis of the convergence properties of the methods discussed. The reach of the ideas is illustrated by discussing a wide range of applications and the models that have found wide usage. Given the wide range of examples, exercises and applications students, practitioners and researchers in probability, statistics, operations research, economics, finance, engineering as well as biology and chemistry and physics will find the book of value.
Foundations and Methods of Stochastic Simulation

Author: Barry Nelson
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-01-31
This graduate-level text covers modeling, programming and analysis of simulation experiments and provides a rigorous treatment of the foundations of simulation and why it works. It introduces object-oriented programming for simulation, covers both the probabilistic and statistical basis for simulation in a rigorous but accessible manner (providing all necessary background material); and provides a modern treatment of experiment design and analysis that goes beyond classical statistics. The book emphasizes essential foundations throughout, rather than providing a compendium of algorithms and theorems and prepares the reader to use simulation in research as well as practice. The book is a rigorous, but concise treatment, emphasizing lasting principles but also providing specific training in modeling, programming and analysis. In addition to teaching readers how to do simulation, it also prepares them to use simulation in their research; no other book does this. An online solutions manual for end of chapter exercises is also provided.
Stochastic Simulation Optimization

With the advance of new computing technology, simulation is becoming very popular for designing large, complex, and stochastic engineering systems, since closed-form analytical solutions generally do not exist for such problems. However, the added flexibility of simulation often creates models that are computationally intractable. Moreover, to obtain a sound statistical estimate at a specified level of confidence, a large number of simulation runs (or replications) is usually required for each design alternative. If the number of design alternatives is large, the total simulation cost can be very expensive. This book addresses the pertinent efficiency issue via smart allocation of computing resource in the simulation experiments for optimization, and aims to provide academic researchers and industrial practitioners a comprehensive coverage of OCBA approach for stochastic simulation optimization. Starting with an intuitive explanation of computing budget allocation and a discussion of its impact on optimization performance, a series of OCBA approaches developed for various problems are then presented, from the selection of the best design to optimization with multiple objectives.Finally, this book discusses the potential extension of OCBA notion to different applications such as data envelopment analysis, experiments of design, and rare-event simulation.