Stochastic Reliability Modeling Optimization And Applications


Download Stochastic Reliability Modeling Optimization And Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Stochastic Reliability Modeling Optimization And Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Stochastic Reliability Modeling, Optimization and Applications


Stochastic Reliability Modeling, Optimization and Applications

Author: Syouji Nakamura

language: en

Publisher: World Scientific

Release Date: 2010


DOWNLOAD





Aims to survey research topics in reliability theory and useful applied techniques in reliability engineering. This book focuses on how to apply the results of reliability theory to practical models. Theoretical results of coherent, inspection, and damage systems are summarized methodically, using the techniques of stochastic processes.

Stochastic Simulation Optimization: An Optimal Computing Budget Allocation


Stochastic Simulation Optimization: An Optimal Computing Budget Allocation

Author: Chun-hung Chen

language: en

Publisher: World Scientific

Release Date: 2010-06-04


DOWNLOAD





With the advance of new computing technology, simulation is becoming very popular for designing large, complex and stochastic engineering systems, since closed-form analytical solutions generally do not exist for such problems. However, the added flexibility of simulation often creates models that are computationally intractable. Moreover, to obtain a sound statistical estimate at a specified level of confidence, a large number of simulation runs (or replications) is usually required for each design alternative. If the number of design alternatives is large, the total simulation cost can be very expensive.Stochastic Simulation Optimization addresses the pertinent efficiency issue via smart allocation of computing resource in the simulation experiments for optimization, and aims to provide academic researchers and industrial practitioners with a comprehensive coverage of OCBA approach for stochastic simulation optimization. Starting with an intuitive explanation of computing budget allocation and a discussion of its impact on optimization performance, a series of OCBA approaches developed for various problems are then presented, from the selection of the best design to optimization with multiple objectives. Finally, this book discusses the potential extension of OCBA notion to different applications such as data envelopment analysis, experiments of design and rare-event simulation.

Applied Stochastic System Modeling


Applied Stochastic System Modeling

Author: Shunji Osaki

language: en

Publisher: Springer Science & Business Media

Release Date: 2012-12-06


DOWNLOAD





This book was written for an introductory one-semester or two-quarter course in stochastic processes and their applications. The reader is assumed to have a basic knowledge of analysis and linear algebra at an undergraduate level. Stochastic models are applied in many fields such as engineering systems, physics, biology, operations research, business, economics, psychology, and linguistics. Stochastic modeling is one of the promising kinds of modeling in applied probability theory. This book is intended to introduce basic stochastic processes: Poisson pro cesses, renewal processes, discrete-time Markov chains, continuous-time Markov chains, and Markov-renewal processes. These basic processes are introduced from the viewpoint of elementary mathematics without going into rigorous treatments. This book also introduces applied stochastic system modeling such as reliability and queueing modeling. Chapters 1 and 2 deal with probability theory, which is basic and prerequisite to the following chapters. Many important concepts of probabilities, random variables, and probability distributions are introduced. Chapter 3 develops the Poisson process, which is one of the basic and im portant stochastic processes. Chapter 4 presents the renewal process. Renewal theoretic arguments are then used to analyze applied stochastic models. Chapter 5 develops discrete-time Markov chains. Following Chapter 5, Chapter 6 deals with continuous-time Markov chains. Continuous-time Markov chains have im portant applications to queueing models as seen in Chapter 9. A one-semester course or two-quarter course consists of a brief review of Chapters 1 and 2, fol lowed in order by Chapters 3 through 6.