Stochastic Optimization Models In Finance

Download Stochastic Optimization Models In Finance PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Stochastic Optimization Models In Finance book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Stochastic Optimization Models in Finance

A reprint of one of the classic volumes on portfolio theory and investment, this book has been used by the leading professors at universities such as Stanford, Berkeley, and Carnegie-Mellon. It contains five parts, each with a review of the literature and about 150 pages of computational and review exercises and further in-depth, challenging problems.Frequently referenced and highly usable, the material remains as fresh and relevant for a portfolio theory course as ever.
Stochastic Optimization Models in Finance

Stochastic Optimization Models in Finance focuses on the applications of stochastic optimization models in finance, with emphasis on results and methods that can and have been utilized in the analysis of real financial problems. The discussions are organized around five themes: mathematical tools; qualitative economic results; static portfolio selection models; dynamic models that are reducible to static models; and dynamic models. This volume consists of five parts and begins with an overview of expected utility theory, followed by an analysis of convexity and the Kuhn-Tucker conditions. The reader is then introduced to dynamic programming; stochastic dominance; and measures of risk aversion. Subsequent chapters deal with separation theorems; existence and diversification of optimal portfolio policies; effects of taxes on risk taking; and two-period consumption models and portfolio revision. The book also describes models of optimal capital accumulation and portfolio selection. This monograph will be of value to mathematicians and economists as well as to those interested in economic theory and mathematical economics.
Multistage Stochastic Optimization

Multistage stochastic optimization problems appear in many ways in finance, insurance, energy production and trading, logistics and transportation, among other areas. They describe decision situations under uncertainty and with a longer planning horizon. This book contains a comprehensive treatment of today’s state of the art in multistage stochastic optimization. It covers the mathematical backgrounds of approximation theory as well as numerous practical algorithms and examples for the generation and handling of scenario trees. A special emphasis is put on estimation and bounding of the modeling error using novel distance concepts, on time consistency and the role of model ambiguity in the decision process. An extensive treatment of examples from electricity production, asset liability management and inventory control concludes the book.