Stochastic Optimization For Large Scale Machine Learning


Download Stochastic Optimization For Large Scale Machine Learning PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Stochastic Optimization For Large Scale Machine Learning book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Stochastic Optimization for Large-Scale Machine Learning


Stochastic Optimization for Large-Scale Machine Learning

Author: Vinod Kumar Chauhan

language: en

Publisher:

Release Date: 2021-11


DOWNLOAD





"Stochastic Optimization for Large-scale Machine Learning identifies different areas of improvement and recent research directions to tackle the challenge. Developed optimisation techniques are also explored to improve machine learning algorithms based on data access and on first and second order optimisation methods. The book will be a valuable reference to practitioners and researchers as well as students in the field of machine learning"--

Stochastic Optimization for Large-scale Machine Learning


Stochastic Optimization for Large-scale Machine Learning

Author: Vinod Kumar Chauhan

language: en

Publisher: CRC Press

Release Date: 2021-11-18


DOWNLOAD





Advancements in the technology and availability of data sources have led to the `Big Data' era. Working with large data offers the potential to uncover more fine-grained patterns and take timely and accurate decisions, but it also creates a lot of challenges such as slow training and scalability of machine learning models. One of the major challenges in machine learning is to develop efficient and scalable learning algorithms, i.e., optimization techniques to solve large scale learning problems. Stochastic Optimization for Large-scale Machine Learning identifies different areas of improvement and recent research directions to tackle the challenge. Developed optimisation techniques are also explored to improve machine learning algorithms based on data access and on first and second order optimisation methods. Key Features: Bridges machine learning and Optimisation. Bridges theory and practice in machine learning. Identifies key research areas and recent research directions to solve large-scale machine learning problems. Develops optimisation techniques to improve machine learning algorithms for big data problems. The book will be a valuable reference to practitioners and researchers as well as students in the field of machine learning.

Proceedings of COMPSTAT'2010


Proceedings of COMPSTAT'2010

Author: Yves Lechevallier

language: en

Publisher: Springer Science & Business Media

Release Date: 2010-11-08


DOWNLOAD





Proceedings of the 19th international symposium on computational statistics, held in Paris august 22-27, 2010.Together with 3 keynote talks, there were 14 invited sessions and more than 100 peer-reviewed contributed communications.