Stochastic Models In Geosystems

Download Stochastic Models In Geosystems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Stochastic Models In Geosystems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Stochastic Models in Geosystems

This IMA Volume in Mathematics and its Applications STOCHASTIC MODELS IN GEOSYSTEMS is based on the proceedings of a workshop with the same title and was an integral part of the 1993-94 IMA program on "Emerging Applications of Probability." We would like to thank Stanislav A. Molchanov and Wojbor A. Woyczynski for their hard work in organizing this meeting and in edit ing the proceedings. We also take this opportunity to thank the National Science Foundation, the Office of N aval Research, the Army Research Of fice, and the National Security Agency, whose financial support made this workshop possible. A vner Friedman Willard Miller, Jr. v PREFACE A workshop on Stochastic Models in Geosystems was held during the week of May 16, 1994 at the Institute for Mathematics and Its Applica tions at the University of Minnesota. It was part of the Special Year on Emerging Applications of Prob ability program put together by an organiz ing committee chaired by J. Michael Steele. The invited speakers represented a broad interdisciplinary spectrum including mathematics, statistics, physics, geophysics, astrophysics, atmo spheric physics, fluid mechanics, seismology, and oceanography. The com mon underlying theme was stochastic modeling of geophysical phenomena and papers appearing in this volume reflect a number of research directions that are currently pursued in these areas.
Stochastic Models in Geosystems

This volume contains edited proceedings of a workshop on Stochastic Models in Geosystems held at the Institute for Mathematics and Its Applications at the University of Minnesota. The authors represent a broad interdisciplinary spectrum including mathematics, statistics, physics, geophysics, astrophysics, atmospheric physics, fluid mechanics, seismology, and oceanography.
Dynamics of Stochastic Systems

Fluctuating parameters appear in a variety of physical systems and phenomena. They typically come either as random forces/sources, or advecting velocities, or media (material) parameters, like refraction index, conductivity, diffusivity, etc. The well known example of Brownian particle suspended in fluid and subjected to random molecular bombardment laid the foundation for modern stochastic calculus and statistical physics. Other important examples include turbulent transport and diffusion of particle-tracers (pollutants), or continuous densities (''oil slicks''), wave propagation and scattering in randomly inhomogeneous media, for instance light or sound propagating in the turbulent atmosphere.Such models naturally render to statistical description, where the input parameters and solutions are expressed by random processes and fields.The fundamental problem of stochastic dynamics is to identify the essential characteristics of system (its state and evolution), and relate those to the input parameters of the system and initial data.This raises a host of challenging mathematical issues. One could rarely solve such systems exactly (or approximately) in a closed analytic form, and their solutions depend in a complicated implicit manner on the initial-boundary data, forcing and system's (media) parameters . In mathematical terms such solution becomes a complicated "nonlinear functional" of random fields and processes.Part I gives mathematical formulation for the basic physical models of transport, diffusion, propagation and develops some analytic tools.Part II sets up and applies the techniques of variational calculus and stochastic analysis, like Fokker-Plank equation to those models, to produce exact or approximate solutions, or in worst case numeric procedures. The exposition is motivated and demonstrated with numerous examples.Part III takes up issues for the coherent phenomena in stochastic dynamical systems, described by ordinary and partial differential equations, like wave propagation in randomly layered media (localization), turbulent advection of passive tracers (clustering).Each chapter is appended with problems the reader to solve by himself (herself), which will be a good training for independent investigations.·This book is translation from Russian and is completed with new principal results of recent research.·The book develops mathematical tools of stochastic analysis, and applies them to a wide range of physical models of particles, fluids, and waves.·Accessible to a broad audience with general background in mathematical physics, but no special expertise in stochastic analysis, wave propagation or turbulence