Stochastic Methods For Flow In Porous Media

Download Stochastic Methods For Flow In Porous Media PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Stochastic Methods For Flow In Porous Media book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Stochastic Methods for Flow in Porous Media

Stochastic Methods for Flow in Porous Media: Coping with Uncertainties explores fluid flow in complex geologic environments. The parameterization of uncertainty into flow models is important for managing water resources, preserving subsurface water quality, storing energy and wastes, and improving the safety and economics of extracting subsurface mineral and energy resources. This volume systematically introduces a number of stochastic methods used by researchers in the community in a tutorial way and presents methodologies for spatially and temporally stationary as well as nonstationary flows. The author compiles a number of well-known results and useful formulae and includes exercises at the end of each chapter. - Balanced viewpoint of several stochastic methods, including Greens' function, perturbative expansion, spectral, Feynman diagram, adjoint state, Monte Carlo simulation, and renormalization group methods - Tutorial style of presentation will facilitate use by readers without a prior in-depth knowledge of Stochastic processes - Practical examples throughout the text - Exercises at the end of each chapter reinforce specific concepts and techniques - For the reader who is interested in hands-on experience, a number of computer codes are included and discussed
Modeling Transport Phenomena in Porous Media with Applications

This book is an ensemble of six major chapters, an introduction, and a closure on modeling transport phenomena in porous media with applications. Two of the six chapters explain the underlying theories, whereas the rest focus on new applications. Porous media transport is essentially a multi-scale process. Accordingly, the related theory described in the second and third chapters covers both continuum‐ and meso‐scale phenomena. Examining the continuum formulation imparts rigor to the empirical porous media models, while the mesoscopic model focuses on the physical processes within the pores. Porous media models are discussed in the context of a few important engineering applications. These include biomedical problems, gas hydrate reservoirs, regenerators, and fuel cells. The discussion reveals the strengths and weaknesses of existing models as well as future research directions.
Handbook of Environmental Fluid Dynamics, Volume One

Author: Harindra Joseph Fernando
language: en
Publisher: CRC Press
Release Date: 2012-12-12
With major implications for applied physics, engineering, and the natural and social sciences, the rapidly growing area of environmental fluid dynamics focuses on the interactions of human activities, environment, and fluid motion. A landmark for the field, the two-volume Handbook of Environmental Fluid Dynamics presents the basic principles, fundamental flow processes, modeling techniques, and measurement methods used in the study of environmental motions. It also offers critical discussions of environmental sustainability related to engineering. The handbook features 81 chapters written by 135 renowned researchers from around the world. Covering environmental, policy, biological, and chemical aspects, it tackles important cross-disciplinary topics such as sustainability, ecology, pollution, micrometeorology, and limnology. Volume One: Overview and Fundamentals provides a comprehensive overview of the basic principles. It starts with general topics that emphasize the relevance of environmental fluid dynamics research in society, public policy, infrastructure, quality of life, security, and the law. It then discusses established and emerging focus areas. The volume also examines the sub-mesoscale flow processes and phenomena that form the building blocks of environmental motions, with emphasis on turbulent motions and their role in heat, momentum, and species transport. As communities face existential challenges posed by climate change, rapid urbanization, and scarcity of water and energy, the study of environmental fluid dynamics becomes increasingly relevant. This volume is a valuable resource for students, researchers, and policymakers working to better understand the fundamentals of environmental motions and how they affect and are influenced by anthropogenic activities. See also Handbook of Environmental Fluid Dynamics, Two-Volume Set and Volume Two: Systems, Pollution, Modeling, and Measurements.