Stochastic Methods And Their Applications To Communications

Download Stochastic Methods And Their Applications To Communications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Stochastic Methods And Their Applications To Communications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Stochastic Methods and their Applications to Communications

Stochastic Methods & their Applications to Communications presents a valuable approach to the modelling, synthesis and numerical simulation of random processes with applications in communications and related fields. The authors provide a detailed account of random processes from an engineering point of view and illustrate the concepts with examples taken from the communications area. The discussions mainly focus on the analysis and synthesis of Markov models of random processes as applied to modelling such phenomena as interference and fading in communications. Encompassing both theory and practice, this original text provides a unified approach to the analysis and generation of continuous, impulsive and mixed random processes based on the Fokker-Planck equation for Markov processes. Presents the cumulated analysis of Markov processes Offers a SDE (Stochastic Differential Equations) approach to the generation of random processes with specified characteristics Includes the modelling of communication channels and interfer ences using SDE Features new results and techniques for the of solution of the generalized Fokker-Planck equation Essential reading for researchers, engineers, and graduate and upper year undergraduate students in the field of communications, signal processing, control, physics and other areas of science, this reference will have wide ranging appeal.
Theory and Applications of Stochastic Processes

Author: Zeev Schuss
language: en
Publisher: Springer Science & Business Media
Release Date: 2009-12-09
Stochastic processes and diffusion theory are the mathematical underpinnings of many scientific disciplines, including statistical physics, physical chemistry, molecular biophysics, communications theory and many more. Many books, reviews and research articles have been published on this topic, from the purely mathematical to the most practical. This book offers an analytical approach to stochastic processes that are most common in the physical and life sciences, as well as in optimal control and in the theory of filltering of signals from noisy measurements. Its aim is to make probability theory in function space readily accessible to scientists trained in the traditional methods of applied mathematics, such as integral, ordinary, and partial differential equations and asymptotic methods, rather than in probability and measure theory.
Algebraic Structures and Applications

This book explores the latest advances in algebraic structures and applications, and focuses on mathematical concepts, methods, structures, problems, algorithms and computational methods important in the natural sciences, engineering and modern technologies. In particular, it features mathematical methods and models of non-commutative and non-associative algebras, hom-algebra structures, generalizations of differential calculus, quantum deformations of algebras, Lie algebras and their generalizations, semi-groups and groups, constructive algebra, matrix analysis and its interplay with topology, knot theory, dynamical systems, functional analysis, stochastic processes, perturbation analysis of Markov chains, and applications in network analysis, financial mathematics and engineering mathematics. The book addresses both theory and applications, which are illustrated with a wealth of ideas, proofs and examples to help readers understand the material and develop new mathematical methods and concepts of their own. The high-quality chapters share a wealth of new methods and results, review cutting-edge research and discuss open problems and directions for future research. Taken together, they offer a source of inspiration for a broad range of researchers and research students whose work involves algebraic structures and their applications, probability theory and mathematical statistics, applied mathematics, engineering mathematics and related areas.