Stochastic Local Search Methods Models Applications

Download Stochastic Local Search Methods Models Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Stochastic Local Search Methods Models Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Stochastic Local Search

Stochastic local search (SLS) algorithms are among the most prominent and successful techniques for solving computationally difficult problems. Offering a systematic treatment of SLS algorithms, this book examines the general concepts and specific instances of SLS algorithms and considers their development, analysis and application.
Stochastic Local Search - Methods, Models, Applications

To date, stochastic local search (SLS) algorithms are among the standard methods for solving hard combinatorial problems from various areas of Artificial Intelligence and Operations Research. Some of the most successful and powerful algorithms for prominent problems like SAT, CSP, or TSP are based on stochastic local search. This work investigates various aspects of SLS algorithms; in particular, it focusses on modelling these algorithms, empirically evaluating their performance, characterising and improving their behaviour, and understanding the factors which influence their efficiency. These issues are studied for the SAT problem in propositional logic as a primary application domain. SAT has the advantage of being conceptually very simple, which facilitates the design, implementation, and presentation of algorithms as well as their analysis. However, most of the methodology generalises easily to other combinatorial problems like CSP. This Ph.D. thesis won the Best Dissertation Award 1999 (Dissertationspreis) of the German Informatics Society (Gesellschaft fur Informatik).