Stochastic Linear Programming

Download Stochastic Linear Programming PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Stochastic Linear Programming book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Stochastic Linear Programming

Author: Peter Kall
language: en
Publisher: Springer Science & Business Media
Release Date: 2005-07-25
Peter Kall and János Mayer are distinguished scholars and professors of Operations Research and their research interest is particularly devoted to the area of stochastic optimization. Stochastic Linear Programming: Models, Theory, and Computation is a definitive presentation and discussion of the theoretical properties of the models, the conceptual algorithmic approaches, and the computational issues relating to the implementation of these methods to solve problems that are stochastic in nature. The application area of stochastic programming includes portfolio analysis, financial optimization, energy problems, random yields in manufacturing, risk analysis, etc. In this book, models in financial optimization and risk analysis are discussed as examples, including solution methods and their implementation. Stochastic programming is a fast developing area of optimization and mathematical programming. Numerous papers and conference volumes, and several monographs have been published in the area; however, the Kall and Mayer book will be particularly useful in presenting solution methods including their solid theoretical basis and their computational issues, based in many cases on implementations by the authors. The book is also suitable for advanced courses in stochastic optimization.
Introduction to Stochastic Programming

Author: John R. Birge
language: en
Publisher: Springer Science & Business Media
Release Date: 2006-04-06
This rapidly developing field encompasses many disciplines including operations research, mathematics, and probability. Conversely, it is being applied in a wide variety of subjects ranging from agriculture to financial planning and from industrial engineering to computer networks. This textbook provides a first course in stochastic programming suitable for students with a basic knowledge of linear programming, elementary analysis, and probability. The authors present a broad overview of the main themes and methods of the subject, thus helping students develop an intuition for how to model uncertainty into mathematical problems, what uncertainty changes bring to the decision process, and what techniques help to manage uncertainty in solving the problems. The early chapters introduce some worked examples of stochastic programming, demonstrate how a stochastic model is formally built, develop the properties of stochastic programs and the basic solution techniques used to solve them. The book then goes on to cover approximation and sampling techniques and is rounded off by an in-depth case study. A well-paced and wide-ranging introduction to this subject.
Stochastic Decomposition

Author: Julia L. Higle
language: en
Publisher: Springer Science & Business Media
Release Date: 1996-02-29
This book summarizes developments related to a class of methods called Stochastic Decomposition (SD) algorithms, which represent an important shift in the design of optimization algorithms. Unlike traditional deterministic algorithms, SD combines sampling approaches from the statistical literature with traditional mathematical programming constructs (e.g. decomposition, cutting planes etc.). This marriage of two highly computationally oriented disciplines leads to a line of work that is most definitely driven by computational considerations. Furthermore, the use of sampled data in SD makes it extremely flexible in its ability to accommodate various representations of uncertainty, including situations in which outcomes/scenarios can only be generated by an algorithm/simulation. The authors report computational results with some of the largest stochastic programs arising in applications. These results (mathematical as well as computational) are the `tip of the iceberg'. Further research will uncover extensions of SD to a wider class of problems. Audience: Researchers in mathematical optimization, including those working in telecommunications, electric power generation, transportation planning, airlines and production systems. Also suitable as a text for an advanced course in stochastic optimization.