Stochastic Integration

Download Stochastic Integration PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Stochastic Integration book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Stochastic Integration and Differential Equations

Author: Philip E. Protter
language: en
Publisher: Springer Science & Business Media
Release Date: 2005-03-04
It has been 15 years since the first edition of Stochastic Integration and Differential Equations, A New Approach appeared, and in those years many other texts on the same subject have been published, often with connections to applications, especially mathematical finance. Yet in spite of the apparent simplicity of approach, none of these books has used the functional analytic method of presenting semimartingales and stochastic integration. Thus a 2nd edition seems worthwhile and timely, though it is no longer appropriate to call it "a new approach". The new edition has several significant changes, most prominently the addition of exercises for solution. These are intended to supplement the text, but lemmas needed in a proof are never relegated to the exercises. Many of the exercises have been tested by graduate students at Purdue and Cornell Universities. Chapter 3 has been completely redone, with a new, more intuitive and simultaneously elementary proof of the fundamental Doob-Meyer decomposition theorem, the more general version of the Girsanov theorem due to Lenglart, the Kazamaki-Novikov criteria for exponential local martingales to be martingales, and a modern treatment of compensators. Chapter 4 treats sigma martingales (important in finance theory) and gives a more comprehensive treatment of martingale representation, including both the Jacod-Yor theory and Emery’s examples of martingales that actually have martingale representation (thus going beyond the standard cases of Brownian motion and the compensated Poisson process). New topics added include an introduction to the theory of the expansion of filtrations, a treatment of the Fefferman martingale inequality, and that the dual space of the martingale space H^1 can be identified with BMO martingales. Solutions to selected exercises are available at the web site of the author, with current URL http://www.orie.cornell.edu/~protter/books.html.
Stochastic Integration

Probability and Mathematical Statistics: A Series of Monographs and Textbooks: Stochastic Integration focuses on the processes, methodologies, and approaches involved in stochastic integration. The publication first takes a look at the Ito formula, stochastic integral equations, and martingales and semimartingales. Discussions focus on Meyer process and decomposition theorem, inequalities, examples of stochastic differential equations, general stochastic integral equations, and applications of the Ito formula. The text then elaborates on stochastic measures, including stochastic measures and related integration and the Riesz representation theorem. The manuscript tackles the special features of infinite dimensional stochastic integration, as well as the isometric integral of a Hubert-valued square integrable martingale, cylindrical processes, and stochastic integral with respect to 2-cylindrical martingales with finite quadratic variation. The book is a valuable reference for mathematicians and researchers interested in stochastic integration.
Introduction to Stochastic Integration

Author: K.L. Chung
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-11-09
A highly readable introduction to stochastic integration and stochastic differential equations, this book combines developments of the basic theory with applications. It is written in a style suitable for the text of a graduate course in stochastic calculus, following a course in probability. Using the modern approach, the stochastic integral is defined for predictable integrands and local martingales; then It’s change of variable formula is developed for continuous martingales. Applications include a characterization of Brownian motion, Hermite polynomials of martingales, the Feynman–Kac functional and the Schrödinger equation. For Brownian motion, the topics of local time, reflected Brownian motion, and time change are discussed. New to the second edition are a discussion of the Cameron–Martin–Girsanov transformation and a final chapter which provides an introduction to stochastic differential equations, as well as many exercises for classroom use. This book will be a valuable resource to all mathematicians, statisticians, economists, and engineers employing the modern tools of stochastic analysis. The text also proves that stochastic integration has made an important impact on mathematical progress over the last decades and that stochastic calculus has become one of the most powerful tools in modern probability theory. —Journal of the American Statistical Association An attractive text...written in [a] lean and precise style...eminently readable. Especially pleasant are the care and attention devoted to details... A very fine book. —Mathematical Reviews