Stochastic Integral And Differential Equations In Mathematical Modelling


Download Stochastic Integral And Differential Equations In Mathematical Modelling PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Stochastic Integral And Differential Equations In Mathematical Modelling book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Stochastic Integral And Differential Equations In Mathematical Modelling


Stochastic Integral And Differential Equations In Mathematical Modelling

Author: Santanu Saha Ray

language: en

Publisher: World Scientific

Release Date: 2023-04-25


DOWNLOAD





The modelling of systems by differential equations usually requires that the parameters involved be completely known. Such models often originate from problems in physics or economics where we have insufficient information on parameter values. One important class of stochastic mathematical models is stochastic partial differential equations (SPDEs), which can be seen as deterministic partial differential equations (PDEs) with finite or infinite dimensional stochastic processes — either with colour noise or white noise. Though white noise is a purely mathematical construction, it can be a good model for rapid random fluctuations.Stochastic Integral and Differential Equations in Mathematical Modelling concerns the analysis of discrete-time approximations for stochastic differential equations (SDEs) driven by Wiener processes. It also provides a theoretical basis for working with SDEs and stochastic processes.This book is written in a simple and clear mathematical logical language, with basic definitions and theorems on stochastic calculus provided from the outset. Each chapter contains illustrated examples via figures and tables. The reader can also construct new wavelets by using the procedure presented in the book. Stochastic Integral and Differential Equations in Mathematical Modelling fulfils the existing gap in the literature for a comprehensive account of this subject area.

Modeling with Itô Stochastic Differential Equations


Modeling with Itô Stochastic Differential Equations

Author: E. Allen

language: en

Publisher: Springer Science & Business Media

Release Date: 2007-03-08


DOWNLOAD





Dynamical systems with random influences occur throughout the physical, biological, and social sciences. By carefully studying a randomly varying system over a small time interval, a discrete stochastic process model can be constructed. Next, letting the time interval shrink to zero, an Ito stochastic differential equation model for the dynamical system is obtained. This modeling procedure is thoroughly explained and illustrated for randomly varying systems in population biology, chemistry, physics, engineering, and finance. Introductory chapters present the fundamental concepts of random variables, stochastic processes, stochastic integration, and stochastic differential equations. These concepts are explained in a Hilbert space setting which unifies and simplifies the presentation. Computer programs, given throughout the text, are useful in solving representative stochastic problems. Analytical and computational exercises are provided in each chapter that complement the material in the text. Modeling with Itô Stochastic Differential Equations is useful for researchers and graduate students. As a textbook for a graduate course, prerequisites include probability theory, differential equations, intermediate analysis, and some knowledge of scientific programming.

Stochastic Integration and Differential Equations


Stochastic Integration and Differential Equations

Author: Philip E. Protter

language: en

Publisher: Springer Science & Business Media

Release Date: 2005-03-04


DOWNLOAD





It has been 15 years since the first edition of Stochastic Integration and Differential Equations, A New Approach appeared, and in those years many other texts on the same subject have been published, often with connections to applications, especially mathematical finance. Yet in spite of the apparent simplicity of approach, none of these books has used the functional analytic method of presenting semimartingales and stochastic integration. Thus a 2nd edition seems worthwhile and timely, though it is no longer appropriate to call it "a new approach". The new edition has several significant changes, most prominently the addition of exercises for solution. These are intended to supplement the text, but lemmas needed in a proof are never relegated to the exercises. Many of the exercises have been tested by graduate students at Purdue and Cornell Universities. Chapter 3 has been completely redone, with a new, more intuitive and simultaneously elementary proof of the fundamental Doob-Meyer decomposition theorem, the more general version of the Girsanov theorem due to Lenglart, the Kazamaki-Novikov criteria for exponential local martingales to be martingales, and a modern treatment of compensators. Chapter 4 treats sigma martingales (important in finance theory) and gives a more comprehensive treatment of martingale representation, including both the Jacod-Yor theory and Emery’s examples of martingales that actually have martingale representation (thus going beyond the standard cases of Brownian motion and the compensated Poisson process). New topics added include an introduction to the theory of the expansion of filtrations, a treatment of the Fefferman martingale inequality, and that the dual space of the martingale space H^1 can be identified with BMO martingales. Solutions to selected exercises are available at the web site of the author, with current URL http://www.orie.cornell.edu/~protter/books.html.