Stochastic Dynamics Modeling Solute Transport In Porous Media

Download Stochastic Dynamics Modeling Solute Transport In Porous Media PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Stochastic Dynamics Modeling Solute Transport In Porous Media book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Stochastic Dynamics. Modeling Solute Transport in Porous Media

Most of the natural and biological phenomena such as solute transport in porous media exhibit variability which can not be modeled by using deterministic approaches. There is evidence in natural phenomena to suggest that some of the observations can not be explained by using the models which give deterministic solutions. Stochastic processes have a rich repository of objects which can be used to express the randomness inherent in the system and the evolution of the system over time. The attractiveness of the stochastic differential equations (SDE) and stochastic partial differential equations (SPDE) come from the fact that we can integrate the variability of the system along with the scientific knowledge pertaining to the system. One of the aims of this book is to explaim some useufl concepts in stochastic dynamics so that the scientists and engineers with a background in undergraduate differential calculus could appreciate the applicability and appropriateness of these developments in mathematics. The ideas are explained in an intuitive manner wherever possible with out compromising rigor.The solute transport problem in porous media saturated with water had been used as a natural setting to discuss the approaches based on stochastic dynamics. The work is also motivated by the need to have more sophisticated mathematical and computational frameworks to model the variability one encounters in natural and industrial systems. This book presents the ideas, models and computational solutions pertaining to a single problem: stochastic flow of contaminant transport in the saturated porous media such as that we find in underground aquifers. In attempting to solve this problem using stochastic concepts, different ideas and new concepts have been explored, and mathematical and computational frameworks have been developed in the process. Some of these concepts, arguments and mathematical and computational constructs are discussed in an intuititve manner in this book.
Modeling Transport Phenomena in Porous Media with Applications

This book is an ensemble of six major chapters, an introduction, and a closure on modeling transport phenomena in porous media with applications. Two of the six chapters explain the underlying theories, whereas the rest focus on new applications. Porous media transport is essentially a multi-scale process. Accordingly, the related theory described in the second and third chapters covers both continuum‐ and meso‐scale phenomena. Examining the continuum formulation imparts rigor to the empirical porous media models, while the mesoscopic model focuses on the physical processes within the pores. Porous media models are discussed in the context of a few important engineering applications. These include biomedical problems, gas hydrate reservoirs, regenerators, and fuel cells. The discussion reveals the strengths and weaknesses of existing models as well as future research directions.
Modelling and Simulation of Diffusive Processes

Author: S.K. Basu
language: en
Publisher: Springer Science & Business Media
Release Date: 2014-04-15
This book addresses the key issues in the modeling and simulation of diffusive processes from a wide spectrum of different applications across a broad range of disciplines. Features: discusses diffusion and molecular transport in living cells and suspended sediment in open channels; examines the modeling of peristaltic transport of nanofluids, and isotachophoretic separation of ionic samples in microfluidics; reviews thermal characterization of non-homogeneous media and scale-dependent porous dispersion resulting from velocity fluctuations; describes the modeling of nitrogen fate and transport at the sediment-water interface and groundwater flow in unconfined aquifers; investigates two-dimensional solute transport from a varying pulse type point source and futile cycles in metabolic flux modeling; studies contaminant concentration prediction along unsteady groundwater flow and modeling synovial fluid flow in human joints; explores the modeling of soil organic carbon and crop growth simulation.