Stochastic Control And Filtering Over Constrained Communication Networks


Download Stochastic Control And Filtering Over Constrained Communication Networks PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Stochastic Control And Filtering Over Constrained Communication Networks book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Stochastic Control and Filtering over Constrained Communication Networks


Stochastic Control and Filtering over Constrained Communication Networks

Author: Qinyuan Liu

language: en

Publisher: Springer

Release Date: 2018-10-24


DOWNLOAD





​Stochastic Control and Filtering over Constrained Communication Networks presents up-to-date research developments and novel methodologies on stochastic control and filtering for networked systems under constrained communication networks. It provides a framework of optimal controller/filter design, resilient filter design, stability and performance analysis for the systems considered, subject to various kinds of communication constraints, including signal-to-noise constraints, bandwidth constraints, and packet drops. Several techniques are employed to develop the controllers and filters desired, including: recursive Riccati equations; matrix decomposition; optimal estimation theory; and mathematical optimization methods. Readers will benefit from the book’s new concepts, models and methodologies that have practical significance in control engineering and signal processing. Stochastic Control and Filtering over Constrained Communication Networks is a practical research reference for engineers dealing with networked control and filtering problems. It is also of interest to academics and students working in control and communication networks.

Optimal and Robust State Estimation


Optimal and Robust State Estimation

Author: Yuriy S. Shmaliy

language: en

Publisher: John Wiley & Sons

Release Date: 2022-07-20


DOWNLOAD





A unified and systematic theoretical framework for solving problems related to finite impulse response (FIR) estimate Optimal and Robust State Estimation: Finite Impulse Response (FIR) and Kalman Approaches is a comprehensive investigation into batch state estimators and recursive forms. The work begins by introducing the reader to the state estimation approach and provides a brief historical overview. Next, the work discusses the specific properties of finite impulse response (FIR) state estimators. Further chapters give the basics of probability and stochastic processes, discuss the available linear and nonlinear state estimators, deal with optimal FIR filtering, and consider a limited memory batch and recursive algorithms. Other topics covered include solving the q-lag FIR smoothing problem, introducing the receding horizon (RH) FIR state estimation approach, and developing the theory of FIR state estimation under disturbances. The book closes by discussing the theory of FIR state estimation for uncertain systems and providing several applications where the FIR state estimators are used effectively. Key concepts covered in the work include: A holistic overview of the state estimation approach, which arose from the need to know the internal state of a real system, given that the input and output are both known Optimal, optimal unbiased, maximum likelihood, and unbiased and robust finite impulse response (FIR) structures FIR state estimation approach along with the infinite impulse response (IIR) and Kalman approaches Cost functions and the most critical properties of FIR and IIR state estimates Optimal and Robust State Estimation: Finite Impulse Response (FIR) and Kalman Approaches was written for professionals in the fields of microwave engineering, system engineering, and robotics who wish to move towards solving finite impulse response (FIR) estimate issues in both theoretical and practical applications. Graduate and senior undergraduate students with coursework dealing with state estimation will also be able to use the book to gain a valuable foundation of knowledge and become more adept in their chosen fields of study.

Recursive Filtering for 2-D Shift-Varying Systems with Communication Constraints


Recursive Filtering for 2-D Shift-Varying Systems with Communication Constraints

Author: Jinling Liang

language: en

Publisher: CRC Press

Release Date: 2021-09-06


DOWNLOAD





This book presents up-to-date research developments and novel methodologies regarding recursive filtering for 2-D shift-varying systems with various communication constraints. It investigates recursive filter/estimator design and performance analysis by a combination of intensive stochastic analysis, recursive Riccati-like equations, variance-constrained approach, and mathematical induction. Each chapter considers dynamics of the system, subtle design of filter gains, and effects of the communication constraints on filtering performance. Effectiveness of the derived theories and applicability of the developed filtering strategies are illustrated via simulation examples and practical insight. Features:- Covers recent advances of recursive filtering for 2-D shift-varying systems subjected to communication constraints from the engineering perspective. Includes the recursive filter design, resilience operation and performance analysis for the considered 2-D shift-varying systems. Captures the essence of the design for 2-D recursive filters. Develops a series of latest results about the robust Kalman filtering and protocol-based filtering. Analyzes recursive filter design and filtering performance for the considered systems. This book aims at graduate students and researchers in mechanical engineering, industrial engineering, communications networks, applied mathematics, robotics and control systems.