Statistics For Mining Engineering

Download Statistics For Mining Engineering PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Statistics For Mining Engineering book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Statistics for Mining Engineering

Many areas of mining engineering gather and use statistical information, provided by observing the actual operation of equipment, their systems, the development of mining works, surface subsidence that accompanies underground mining, displacement of rocks surrounding surface pits and underground drives and longwalls, amongst others. In addition, the actual modern machines used in surface mining are equipped with diagnostic systems that automatically trace all important machine parameters and send this information to the main producer’s computer. Such data not only provide information on the technical properties of the machine but they also have a statistical character. Furthermore, all information gathered during stand and lab investigations where parts, assemblies and whole devices are tested in order to prove their usefulness, have a stochastic character. All of these materials need to be developed statistically and, more importantly, based on these results mining engineers must make decisions whether to undertake actions, connected with the further operation of the machines, the further development of the works, etc. For these reasons, knowledge of modern statistics is necessary for mining engineers; not only as to how statistical analysis of data should be conducted and statistical synthesis should be done, but also as to understanding the results obtained and how to use them to make appropriate decisions in relation to the mining operation. This book on statistical analysis and synthesis starts with a short repetition of probability theory and also includes a special section on statistical prediction. The text is illustrated with many examples taken from mining practice; moreover the tables required to conduct statistical inference are included.
Statistical Methods for Mineral Engineers -

Written by a mineral engineer for mineral engineers, and packed with real world examples, this book de-mystifies the statistics that most of us learned at university and then forgot. It shows how simple statistical methods, most of them available in Excel, can be used to make good decisions in the face of experimental uncertainty. Written in accessible language, it explains how experimental uncertainty arises from the normal measurement errors and how statistics provides a powerful methodology to manage that uncertainty. It assumes only that the readers are numerate, can use Excel, and want to do a better professional job. It is aimed squarely at mineral engineers and allied professionals (such as chemists) on the mine site, in head office, in engineering and supply companies and in universities. Most of the examples are illustrated in Excel but Minitab is also used for advanced techniques. The book includes over 100 Excel and Minitab hints. Example spreadsheets can be downloaded from the JKMRC and JKTech websites.
Data Analytics Applied to the Mining Industry

Data Analytics Applied to the Mining Industry describes the key challenges facing the mining sector as it transforms into a digital industry able to fully exploit process automation, remote operation centers, autonomous equipment and the opportunities offered by the industrial internet of things. It provides guidelines on how data needs to be collected, stored and managed to enable the different advanced data analytics methods to be applied effectively in practice, through use of case studies, and worked examples. Aimed at graduate students, researchers, and professionals in the industry of mining engineering, this book: Explains how to implement advanced data analytics through case studies and examples in mining engineering Provides approaches and methods to improve data-driven decision making Explains a concise overview of the state of the art for Mining Executives and Managers Highlights and describes critical opportunity areas for mining optimization Brings experience and learning in digital transformation from adjacent sectors