Statistics And Scaling In Turbulent Rayleigh B Nard Convection

Download Statistics And Scaling In Turbulent Rayleigh B Nard Convection PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Statistics And Scaling In Turbulent Rayleigh B Nard Convection book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Statistics and Scaling in Turbulent Rayleigh-Bénard Convection

Author: Emily S.C. Ching
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-08-13
This Brief addresses two issues of interest of turbulent Rayleigh-Bénard convection. The first issue is the characterization and understanding of the statistics of the velocity and temperature fluctuations in the system. The second issue is the revelation and understanding of the nature of the scaling behavior of the velocity temperature structure functions. The problem under the Oberbeck-Boussinesq approximation is formulated. The statistical tools, including probability density functions (PDF) and conditional statistics, for studying fluctuations are introduced, and implicit PDF formulae for fluctuations obeying certain statistical symmetries are derived. Applications of these PDF formulae to study the fluctuations in turbulent Rayleigh-Bénard convection are then discussed. The phenomenology of the different types of scaling behavior: the Bolgiano-Obhukov scaling behavior when buoyancy effects are significant and the Kolmogorov-Obukhov-Corrsin scaling behavior when they are not, is introduced. A crossover between the two types of scaling behavior is expected to occur at the Bolgiano length scale above which buoyancy is important. The experimental observations are reviewed. In the central region of the convective cell, the Kolmogorov-Obukhov-Corrsin scaling behavior has been observed. On the other hand, the Bolgiano-Obukhov scaling remains elusive only until recently. By studying the dependence of the conditional temperature structure functions on the locally averaged thermal dissipation rate, evidence for the Bolgiano-Obukhov scaling has recently been found near the bottom plate. The different behaviors observed in the two regions could be attributed to the different size of the Bolgiano scale. What physics determines the relative size of the Bolgiano scale remains to be understood. The Brief is concluded by a discussion of these outstanding issues.
Thermal Characteristics and Convection in Nanofluids

This book covers synthesis, characterization, stability, heat transfer and applications of nanofluids. It includes different types of nanofluids, their preparation methods as well as its effects on the stability and thermophysical properties of nanofluids. It provides a discussion on the mechanism behind the change in the thermal properties of nanofluids and heat transfer behaviour. It presents the latest information and discussion on the preparation and advanced characterization of nanofluids. It also consists of stability analysis of nanofluids and discussion on why it is essential for the industrial application. The book provides a discussion on thermal boundary layer properties in convection. Future directions for heat transfer applications to make the production and application of nanofluids at industrial level are also discussed.
IUTAM Symposium on Geometry and Statistics of Turbulence

Author: T. Kambe
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-03-14
This volume contains the papers presented at the IUTAM Symposium on Geometry and Statistics of Turbulence, held in November 1999, at the Shonan International Village Center, Hayama (Kanagawa-ken), Japan. The Symposium was proposed in 1996, aiming at organizing concen trated discussions on current understanding of fluid turbulence with empha sis on the statistics and the underlying geometric structures. The decision of the General Assembly of International Union of Theoretical and Applied Mechanics (IUTAM) to accept the proposal was greeted with enthusiasm. Turbulence is often characterized as having the properties of mixing, inter mittency, non-Gaussian statistics, and so on. Interest is growing recently in how these properties are related to formation and evolution of struc tures. Note that the intermittency is meant for passive scalars as well as for turbulence velocity or rate of dissipation. There were eighty-eight participants in the Symposium. They came from thirteen countries, and fifty-seven papers were presented. The presenta tions comprised a wide variety of fundamental subjects of mathematics, statistical analyses, physical models as well as engineering applications. Among the subjects discussed are (a) Degree of self-similarity in cascade, (b) Fine-scale structures and degree of Markovian property in turbulence, (c) Dynamics of vorticity and rates of strain, (d) Statistics associated with vortex structures, (e) Topology, structures and statistics of passive scalar advection, (f) Partial differential equations governing PDFs of velocity in crements, (g) Thermal turbulences, (h) Channel and pipe flow turbulences, and others.