Statistical Process Monitoring Using Advanced Data Driven And Deep Learning Approaches

Download Statistical Process Monitoring Using Advanced Data Driven And Deep Learning Approaches PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Statistical Process Monitoring Using Advanced Data Driven And Deep Learning Approaches book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Statistical Process Monitoring Using Advanced Data-Driven and Deep Learning Approaches

Statistical Process Monitoring Using Advanced Data-Driven and Deep Learning Approaches tackles multivariate challenges in process monitoring by merging the advantages of univariate and traditional multivariate techniques to enhance their performance and widen their practical applicability. The book proceeds with merging the desirable properties of shallow learning approaches – such as a one-class support vector machine and k-nearest neighbours and unsupervised deep learning approaches – to develop more sophisticated and efficient monitoring techniques. Finally, the developed approaches are applied to monitor many processes, such as waste-water treatment plants, detection of obstacles in driving environments for autonomous robots and vehicles, robot swarm, chemical processes (continuous stirred tank reactor, plug flow rector, and distillation columns), ozone pollution, road traffic congestion, and solar photovoltaic systems. - Uses a data-driven based approach to fault detection and attribution - Provides an in-depth understanding of fault detection and attribution in complex and multivariate systems - Familiarises you with the most suitable data-driven based techniques including multivariate statistical techniques and deep learning-based methods - Includes case studies and comparison of different methods
34th European Symposium on Computer Aided Process Engineering /15th International Symposium on Process Systems Engineering

The 34th European Symposium on Computer Aided Process Engineering / 15th International Symposium on Process Systems Engineering, contains the papers presented at the 34th European Symposium on Computer Aided Process Engineering / 15th International Symposium on Process Systems Engineering joint event. It is a valuable resource for chemical engineers, chemical process engineers, researchers in industry and academia, students, and consultants for chemical industries. - Presents findings and discussions from the 34th European Symposium on Computer Aided Process Engineering / 15th International Symposium on Process Systems Engineering joint event
Road Traffic Modeling and Management

Road Traffic Modeling and Management: Using Statistical Monitoring and Deep Learning provides a framework for understanding and enhancing road traffic monitoring and management. The book examines commonly used traffic analysis methodologies as well the emerging methods that use deep learning methods. Other sections discuss how to understand statistical models and machine learning algorithms and how to apply them to traffic modeling, estimation, forecasting and traffic congestion monitoring. Providing both a theoretical framework along with practical technical solutions, this book is ideal for researchers and practitioners who want to improve the performance of intelligent transportation systems. - Provides integrated, up-to-date and complete coverage of the key components for intelligent transportation systems: traffic modeling, forecasting, estimation and monitoring - Uses methods based on video and time series data for traffic modeling and forecasting - Includes case studies, key processes guidance and comparisons of different methodologies