Statistical Modeling Using Local Gaussian Approximation

Download Statistical Modeling Using Local Gaussian Approximation PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Statistical Modeling Using Local Gaussian Approximation book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Statistical Modeling Using Local Gaussian Approximation

Statistical Modeling using Local Gaussian Approximation extends powerful characteristics of the Gaussian distribution, perhaps, the most well-known and most used distribution in statistics, to a large class of non-Gaussian and nonlinear situations through local approximation. This extension enables the reader to follow new methods in assessing dependence and conditional dependence, in estimating probability and spectral density functions, and in discrimination. Chapters in this release cover Parametric, nonparametric, locally parametric, Dependence, Local Gaussian correlation and dependence, Local Gaussian correlation and the copula, Applications in finance, and more. Additional chapters explores Measuring dependence and testing for independence, Time series dependence and spectral analysis, Multivariate density estimation, Conditional density estimation, The local Gaussian partial correlation, Regression and conditional regression quantiles, and a A local Gaussian Fisher discriminant. - Reviews local dependence modeling with applications to time series and finance markets - Introduces new techniques for density estimation, conditional density estimation, and tests of conditional independence with applications in economics - Evaluates local spectral analysis, discovering hidden frequencies in extremes and hidden phase differences - Integrates textual content with three useful R packages
Machine Learning for Beginners

This book is designed to be more than just a traditional textbook; it is a complete learning resource tailored to meet the needs of learners at all levels. Whether you are a student embarking on your first journey into deep learning or an experienced professional seeking to deepen your knowledge and skills, this guide provides the tools and resources necessary to achieve your goals.
Handbook of Research on Cloud Computing and Big Data Applications in IoT

Today, cloud computing, big data, and the internet of things (IoT) are becoming indubitable parts of modern information and communication systems. They cover not only information and communication technology but also all types of systems in society including within the realms of business, finance, industry, manufacturing, and management. Therefore, it is critical to remain up-to-date on the latest advancements and applications, as well as current issues and challenges. The Handbook of Research on Cloud Computing and Big Data Applications in IoT is a pivotal reference source that provides relevant theoretical frameworks and the latest empirical research findings on principles, challenges, and applications of cloud computing, big data, and IoT. While highlighting topics such as fog computing, language interaction, and scheduling algorithms, this publication is ideally designed for software developers, computer engineers, scientists, professionals, academicians, researchers, and students.