Statistical Modeling In Biomedical Research

Download Statistical Modeling In Biomedical Research PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Statistical Modeling In Biomedical Research book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Statistical Modeling for Biomedical Researchers

Author: William D. Dupont
language: en
Publisher: Cambridge University Press
Release Date: 2009-02-12
A second edition of the easy-to-use standard text guiding biomedical researchers in the use of advanced statistical methods.
Statistical Modeling in Biomedical Research

This edited collection discusses the emerging topics in statistical modeling for biomedical research. Leading experts in the frontiers of biostatistics and biomedical research discuss the statistical procedures, useful methods, and their novel applications in biostatistics research. Interdisciplinary in scope, the volume as a whole reflects the latest advances in statistical modeling in biomedical research, identifies impactful new directions, and seeks to drive the field forward. It also fosters the interaction of scholars in the arena, offering great opportunities to stimulate further collaborations. This book will appeal to industry data scientists and statisticians, researchers, and graduate students in biostatistics and biomedical science. It covers topics in: Next generation sequence data analysis Deep learning, precision medicine, and their applications Large scale data analysis and its applications Biomedical research and modeling Survival analysis with complex data structure and its applications.
Statistical Modeling in Biomedical Research

This edited collection discusses the emerging topics in statistical modeling for biomedical research. Leading experts in the frontiers of biostatistics and biomedical research discuss the statistical procedures, useful methods, and their novel applications in biostatistics research. Interdisciplinary in scope, the volume as a whole reflects the latest advances in statistical modeling in biomedical research, identifies impactful new directions, and seeks to drive the field forward. It also fosters the interaction of scholars in the arena, offering great opportunities to stimulate further collaborations. This book will appeal to industry data scientists and statisticians, researchers, and graduate students in biostatistics and biomedical science. It covers topics in: Next generation sequence data analysis Deep learning, precision medicine, and their applications Large scale data analysis and its applications Biomedical research and modeling Survival analysis with complex data structure and its applications.