Statistical Methods For Disease Clustering

Download Statistical Methods For Disease Clustering PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Statistical Methods For Disease Clustering book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Statistical Methods for Disease Clustering

Author: Toshiro Tango
language: en
Publisher: Springer Science & Business Media
Release Date: 2010-01-09
This book is intended to provide a text on statistical methods for detecting clus ters and/or clustering of health events that is of interest to ?nal year undergraduate and graduate level statistics, biostatistics, epidemiology, and geography students but will also be of relevance to public health practitioners, statisticians, biostatisticians, epidemiologists, medical geographers, human geographers, environmental scien tists, and ecologists. Prerequisites are introductory biostatistics and epidemiology courses. With increasing public health concerns about environmental risks, the need for sophisticated methods for analyzing spatial health events is immediate. Further more, the research area of statistical tests for disease clustering now attracts a wide audience due to the perceived need to implement wide ranging monitoring systems to detect possible health related bioterrorism activity. With this background and the development of the geographical information system (GIS), the analysis of disease clustering of health events has seen considerable development over the last decade. Therefore, several excellent books on spatial epidemiology and statistics have re cently been published. However, it seems to me that there is no other book solely focusing on statistical methods for disease clustering. I hope that readers will ?nd this book useful and interesting as an introduction to the subject.
Statistical Methods in Spatial Epidemiology

Author: Andrew B. Lawson
language: en
Publisher: John Wiley & Sons
Release Date: 2013-07-08
Spatial epidemiology is the description and analysis of the geographical distribution of disease. It is more important now than ever, with modern threats such as bio-terrorism making such analysis even more complex. This second edition of Statistical Methods in Spatial Epidemiology is updated and expanded to offer a complete coverage of the analysis and application of spatial statistical methods. The book is divided into two main sections: Part 1 introduces basic definitions and terminology, along with map construction and some basic models. This is expanded upon in Part II by applying this knowledge to the fundamental problems within spatial epidemiology, such as disease mapping, ecological analysis, disease clustering, bio-terrorism, space-time analysis, surveillance and infectious disease modelling. Provides a comprehensive overview of the main statistical methods used in spatial epidemiology. Updated to include a new emphasis on bio-terrorism and disease surveillance. Emphasizes the importance of space-time modelling and outlines the practical application of the method. Discusses the wide range of software available for analyzing spatial data, including WinBUGS, SaTScan and R, and features an accompanying website hosting related software. Contains numerous data sets, each representing a different approach to the analysis, and provides an insight into various modelling techniques. This text is primarily aimed at medical statisticians, researchers and practitioners from public health and epidemiology. It is also suitable for postgraduate students of statistics and epidemiology, as well professionals working in government agencies.
Statistical Methods for Cancer Studies

This book focuses on public health and epidemiologic aspects of cancer, and explores the sources of information concerning the frequency of occurrence of human cancer. It describes statistical methods useful in studying problems arising in the field of cancer and its concurrent development.