Statistical Methods For Data Analysis

Download Statistical Methods For Data Analysis PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Statistical Methods For Data Analysis book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Statistical Techniques for Data Analysis

Since the first edition of this book appeared, computers have come to the aid of modern experimenters and data analysts, bringing with them data analysis techniques that were once beyond the calculational reach of even professional statisticians. Today, scientists in every field have access to the techniques and technology they need to analyze stat
Exact Statistical Methods for Data Analysis

Author: Samaradasa Weerahandi
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-12-01
Now available in paperback. This book covers some recent developments in statistical inference. The author's main aim is to develop a theory of generalized p-values and generalized confidence intervals and to show how these concepts may be used to make exact statistical inferences in a variety of practical applications. In particular, they provide methods applicable in problems involving nuisance parameters such as those encountered in comparing two exponential distributions or in ANOVA without the assumption of equal error variances. The generalized procedures are shown to be more powerful in detecting significant experimental results and in avoiding misleading conclusions.
Advanced Statistical Methods in Data Science

This book gathers invited presentations from the 2nd Symposium of the ICSA- CANADA Chapter held at the University of Calgary from August 4-6, 2015. The aim of this Symposium was to promote advanced statistical methods in big-data sciences and to allow researchers to exchange ideas on statistics and data science and to embraces the challenges and opportunities of statistics and data science in the modern world. It addresses diverse themes in advanced statistical analysis in big-data sciences, including methods for administrative data analysis, survival data analysis, missing data analysis, high-dimensional and genetic data analysis, longitudinal and functional data analysis, the design and analysis of studies with response-dependent and multi-phase designs, time series and robust statistics, statistical inference based on likelihood, empirical likelihood and estimating functions. The editorial group selected 14 high-quality presentations from this successful symposium and invited the presenters to prepare a full chapter for this book in order to disseminate the findings and promote further research collaborations in this area. This timely book offers new methods that impact advanced statistical model development in big-data sciences.