Statistical Methods And Models For Video Based Tracking Modeling And Recognition

Download Statistical Methods And Models For Video Based Tracking Modeling And Recognition PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Statistical Methods And Models For Video Based Tracking Modeling And Recognition book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Statistical Methods and Models for Video-based Tracking, Modeling, and Recognition

Computer vision systems attempt to understand a scene and its components from mostly visual information. The geometry exhibited by the real world, the influence of material properties on scattering of incident light, and the process of imaging introduce constraints and properties that are key to solving some of these tasks. In the presence of noisy observations and other uncertainties, the algorithms make use of statistical methods for robust inference. In this paper, we highlight the role of geometric constraints in statistical estimation methods, and how the interplay of geometry and statistics leads to the choice and design of algorithms. In particular, we illustrate the role of imaging, illumination, and motion constraints in classical vision problems such as tracking, structure from motion, metrology, activity analysis and recognition, and appropriate statistical methods used in each of these problems.
Statistical Methods in Video Processing

Author: Dorin Comaniciu
language: en
Publisher: Springer Science & Business Media
Release Date: 2004-12-16
The 2nd International Workshop on Statistical Methods in Video Processing, SMVP 2004, was held in Prague, Czech Republic, as an associated workshop of ECCV 2004, the 8th European Conference on Computer Vision. A total of 30 papers were submitted to the workshop. Of these, 17 papers were accepted for presentation and included in these proceedings, following a double-blind review process. The workshop had 42 registered participants. The focus of the meeting was on recent progress in the application of - vanced statistical methods to solve computer vision tasks. The one-day scienti?c program covered areas of high interest in vision research, such as dense rec- struction of 3D scenes, multibody motion segmentation, 3D shape inference, errors-in-variables estimation, probabilistic tracking, information fusion, optical ?owcomputation,learningfornonstationaryvideodata,noveltydetectionin- namic backgrounds, background modeling, grouping using feature uncertainty, and crowd segmentation from video. We wish to thank the authors of all submitted papers for their interest in the workshop.Wealsowishtothankthemembersofourprogramcommitteeandthe external reviewers for their commitment of time and e?ort in providing valuable recommendations for each submission. We are thankful to Vaclav Hlavac, the General Chair of ECCV 2004, and to Radim Sara, for the local organization of the workshop and registration management. We hope you will ?nd these proceedings both inspiring and of high scienti?c quality.
Computer Vision

Computer Vision: Algorithms and Applications explores the variety of techniques used to analyze and interpret images. It also describes challenging real-world applications where vision is being successfully used, both in specialized applications such as image search and autonomous navigation, as well as for fun, consumer-level tasks that students can apply to their own personal photos and videos. More than just a source of “recipes,” this exceptionally authoritative and comprehensive textbook/reference takes a scientific approach to the formulation of computer vision problems. These problems are then analyzed using the latest classical and deep learning models and solved using rigorous engineering principles. Topics and features: Structured to support active curricula and project-oriented courses, with tips in the Introduction for using the book in a variety of customized courses Incorporates totally new material on deep learning and applications such as mobile computational photography, autonomous navigation, and augmented reality Presents exercises at the end of each chapter with a heavy emphasis on testing algorithms and containing numerous suggestions for small mid-term projects Includes 1,500 new citations and 200 new figures that cover the tremendous developments from the last decade Provides additional material and more detailed mathematical topics in the Appendices, which cover linear algebra, numerical techniques, estimation theory, datasets, and software Suitable for an upper-level undergraduate or graduate-level course in computer science or engineering, this textbook focuses on basic techniques that work under real-world conditions and encourages students to push their creative boundaries. Its design and exposition also make it eminently suitable as a unique reference to the fundamental techniques and current research literature in computer vision.