Statistical Learning Tools For Electricity Load Forecasting

Download Statistical Learning Tools For Electricity Load Forecasting PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Statistical Learning Tools For Electricity Load Forecasting book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Statistical Learning Tools for Electricity Load Forecasting

Author: Anestis Antoniadis
language: en
Publisher: Springer Nature
Release Date: 2024-08-14
This monograph explores a set of statistical and machine learning tools that can be effectively utilized for applied data analysis in the context of electricity load forecasting. Drawing on their substantial research and experience with forecasting electricity demand in industrial settings, the authors guide readers through several modern forecasting methods and tools from both industrial and applied perspectives – generalized additive models (GAMs), probabilistic GAMs, functional time series and wavelets, random forests, aggregation of experts, and mixed effects models. A collection of case studies based on sizable high-resolution datasets, together with relevant R packages, then illustrate the implementation of these techniques. Five real datasets at three different levels of aggregation (nation-wide, region-wide, or individual) from four different countries (UK, France, Ireland, and the USA) are utilized to study five problems: short-term point-wise forecasting, selection of relevant variables for prediction, construction of prediction bands, peak demand prediction, and use of individual consumer data. This text is intended for practitioners, researchers, and post-graduate students working on electricity load forecasting; it may also be of interest to applied academics or scientists wanting to learn about cutting-edge forecasting tools for application in other areas. Readers are assumed to be familiar with standard statistical concepts such as random variables, probability density functions, and expected values, and to possess some minimal modeling experience.
Machine Learning: Concepts, Methodologies, Tools and Applications

Author: Management Association, Information Resources
language: en
Publisher: IGI Global
Release Date: 2011-07-31
"This reference offers a wide-ranging selection of key research in a complex field of study,discussing topics ranging from using machine learning to improve the effectiveness of agents and multi-agent systems to developing machine learning software for high frequency trading in financial markets"--Provided by publishe
Core Concepts and Methods in Load Forecasting

This comprehensive open access book enables readers to discover the essential techniques for load forecasting in electricity networks, particularly for active distribution networks. From statistical methods to deep learning and probabilistic approaches, the book covers a wide range of techniques and includes real-world applications and a worked examples using actual electricity data (including an example implemented through shared code). Advanced topics for further research are also included, as well as a detailed appendix on where to find data and additional reading. As the smart grid and low carbon economy continue to evolve, the proper development of forecasting methods is vital. This book is a must-read for students, industry professionals, and anyone interested in forecasting for smart control applications, demand-side response, energy markets, and renewable utilization.