Statistical Dynamics And Reliability Theory For Mechanical Structures

Download Statistical Dynamics And Reliability Theory For Mechanical Structures PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Statistical Dynamics And Reliability Theory For Mechanical Structures book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Statistical Dynamics and Reliability Theory for Mechanical Structures

Author: Valery A. Svetlitsky
language: en
Publisher: Springer Science & Business Media
Release Date: 2003-01-07
The theory of random processes is an integral part of the analysis and synthesis of complex engineering systems. This textbook systematically presents the fundamentals of statistical dynamics and reliability theory. The theory of Markovian processes used during the analysis of random dynamic processes in mechanical systems is described in detail. Examples are machines, instruments and structures loaded with perturbations. The reliability and lifetime of those objects depend on how properly these perturbations are taken into account. Random vibrations with finite and infinite numbers of degrees of freedom are analyzed as well as the theory and numerical methods of non-stationary processes under the conditions of statistical indeterminacy. This textbook is addressed to students and post-graduates of technical universities. It can also be useful to lecturers and mechanical engineers, including designers in different industries.
Probabilistic Methods In The Theory Of Structures: Strength Of Materials, Random Vibrations, And Random Buckling

Author: Isaac E Elishakoff
language: en
Publisher: World Scientific
Release Date: 2017-03-23
The first edition of this book appeared over three decades ago (Wiley-Interscience, 1983), whereas the second one saw light on the verge of new millennium (Dover, 1999). This is third, corrected and expanded edition that appears in conjunction with its companion volume .Thus, the reader is able to both get acquainted with the theoretical material and be able to master some of the problems, following Chinese dictum: I hear and I forget. I see and I remember. I do and I understand — Confucius.The main idea of the book lies in the fact that three topics: probabilistic strength of materials, random vibrations, and probabilistic buckling are presented in a single package allowing one to see the forest in between the trees. Indeed, these three topics usually are presented in separate manners, in different specialized books. Here, the reader gets a feeling of true unity of the subject at large in order to appreciate that in the end what one wants is reliability of the structure, in conjunction with its operating conditions.As the author describes in the Preface of the second edition, this book was not conceived ab initio, as a book that author strived to compose. Rather, it was forced, as it were, upon me due to two reasons. One was rather a surprising but understandable requirement in the venerable Delft University of Technology, The Netherlands to prepare the lecture notes for students with the view of reducing skyrocketing costs of acquisition of textbooks by the students. The other one was an unusually warm acceptance of the notes that the author prepared while at Delft University of Technology and later in Haifa, at the Technion-Israel Institute of Technology by the legendary engineering scientist Warner Tjardus Koiter (1914-1997). The energy necessary to prepare the second and third editions came from enthusiastic reviews that appeared in various sources. Author embraced the simplicity of exposition as the main virtue following Isaac Newton's view that 'Truth is ever to be found in simplicity, and not in the multiplicity and confusion of things.'
Dynamics of Mechanical Systems with Coulomb Friction

Author: Le Xuan Anh
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
This book addresses the general theory of motion of mechanical systems with Coulomb friction. In particular, the book focuses on the following specific problems: derivation of the equations of motion, Painleve's paradoxes, tangential impact and dynamic seizure, and frictional self-excited oscillations. In addition to the theoretical results, the book contains a detailed description of experiments that show that, in general, the friction force at the instant of transition to motion is determined by the rate of tangential load and does not depend on the duration of the previous contact. These results are used to develop the theory of frictional self-excited oscillations. A number of industrially relevant mechanisms are considered, including the Painleve-Klein scheme, epicyclic mechanisms, crank mechanisms, gear transmission, the link mechanism of a planing machine, and the slider of metal-cutting machine tools. The book is intended for researchers, engineers and students in mechanical engineering.